Maximum Likelihood Estimation of Latent Affine Processes

This article develops a direct filtration-based maximum likelihood methodology for estimating the parameters and realizations of latent affine processes. The equivalent of Bayes' rule is derived for recursively updating the joint characteristic function of latent variables and the data conditional upon past data. Likelihood functions can consequently be evaluated directly by Fourier inversion. An application to daily stock returns over 1953-96 reveals substantial divergences from EMM-based estimates: in particular, more substantial and time-varying jump risk.

[1]  B. McCarl,et al.  Economics , 1870, The Indian medical gazette.

[2]  K. Pearson ON A METHOD OF DETERMINING WHETHER A SAMPLE OF SIZE n SUPPOSED TO HAVE BEEN DRAWN FROM A PARENT POPULATION HAVING A KNOWN PROBABILITY INTEGRAL HAS PROBABLY BEEN DRAWN AT RANDOM , 1933 .

[3]  M. Bartlett The Characteristic Function of a Conditional Statistic , 1938 .

[4]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[5]  A. Feuerverger,et al.  On the Efficiency of Empirical Characteristic Function Procedures , 1981 .

[6]  A. Feuerverger,et al.  On Some Fourier Methods for Inference , 1981 .

[7]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[8]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[9]  G. Barone-Adesi,et al.  Efficient Analytic Approximation of American Option Values , 1987 .

[10]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[11]  A. Lo Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data , 1986, Econometric Theory.

[12]  N. Savin,et al.  The exact moments of the least-squares estimator for the autoregressive model. Corrections and extensions , 1988 .

[13]  D. Cox,et al.  Asymptotic techniques for use in statistics , 1989 .

[14]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[15]  A. Feuerverger,et al.  An efficiency result for the empirical characteristic function in stationary time-series models , 1990 .

[16]  S. Turnbull,et al.  Pricing foreign currency options with stochastic volatility , 1990 .

[17]  D. Duffie,et al.  Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .

[18]  R. Cumby,et al.  Evaluating the Performance of International Mutual Funds , 1990 .

[19]  David S. Bates The Crash of ʼ87: Was It Expected? The Evidence from Options Markets , 1991 .

[20]  Dean P. Foster,et al.  Filtering and Forecasting with Misspecified Arch Models Ii: Making the Right Forecast with the Wrong Model , 1992 .

[21]  Daniel B. Nelson,et al.  Filtering and Forecasting with Misspecified Arch Models Ii: Making the Right Forecast with the Wrong Model , 1992 .

[22]  William H. Press,et al.  Numerical recipes in FORTRAN (2nd ed.): the art of scientific computing , 1992 .

[23]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[24]  Peter McCullagh,et al.  Does the Moment-Generating Function Characterize a Distribution? , 1994 .

[25]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[26]  John E. Kolassa,et al.  Series Approximation Methods in Statistics , 1994 .

[27]  Linda Anderson-Courtney Journal of econometrics : Subject and author index: volumes 51–60, 1992–1994 , 1994 .

[28]  E. Ruiz Quasi-maximum likelihood estimation of stochastic volatility models , 1994 .

[29]  Dean P. Foster,et al.  Asypmtotic Filtering Theory for Univariate Arch Models , 1994 .

[30]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[31]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[32]  Narasimhan Jegadeesh,et al.  The Behavior of Interest Rates Implied by the Term Structure of Eurodollar Futures , 1996 .

[33]  Bent E. Sørensen,et al.  GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study , 1996 .

[34]  Bent E. Sørensen,et al.  A Continuous-Time Arbitrage-Pricing Model With Stochastic Volatility and Jumps , 1996 .

[35]  L. Harris,et al.  A maximum likelihood approach for non-Gaussian stochastic volatility models , 1998 .

[36]  K. Judd Numerical methods in economics , 1998 .

[37]  P. Honoré Pitfalls in Estimating Jump-Diffusion Models , 1998 .

[38]  David S. Bates,et al.  Valuing the Futures Market Clearinghouse&Apos;S Default Exposure During the 1987 Crash , 1998 .

[39]  Siem Jan Koopman,et al.  Estimation of stochastic volatility models via Monte Carlo maximum likelihood , 1998 .

[40]  A. Gallant,et al.  Reprojecting Partially Observed Systems with Application to Interest Rate Diffusions , 1998 .

[41]  Francis X. Diebold,et al.  Range-Based Estimation of Stochastic Volatility Models or Exchange Rate Dynamics are More Interesting than You Think , 1999 .

[42]  Luis M. Viceira,et al.  Spectral GMM Estimation of Continuous-Time Processes , 1999 .

[43]  R. Stambaugh,et al.  Predictive Regressions , 1999 .

[44]  D. Madan,et al.  Spanning and Derivative-Security Valuation , 2000 .

[45]  R. Engle,et al.  Empirical Pricing Kernels , 1999 .

[46]  Bent E. Sørensen,et al.  Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study , 1999 .

[47]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[48]  Tyler Shumway,et al.  Expected Option Returns , 2000 .

[49]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[50]  David S. Bates Post-'87 crash fears in the S&P 500 futures option market , 2000 .

[51]  Michael W. Brandt,et al.  Range-Based Estimation of Stochastic Volatility Models , 2001 .

[52]  Nicholas G. Polson,et al.  Evidence for and the Impact of Jumps in Volatility and Returns , 2001 .

[53]  Alan L. Lewis A Simple Option Formula for General Jump-Diffusion and Other Exponential Levy Processes , 2001 .

[54]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[55]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[56]  Jun Pan The Jump-Risk Premia Implicit in Options : Evidence from an Integrated Time-Series Study , 2001 .

[57]  M. Yor,et al.  Stochastic Volatility for Levy Processes , 2001 .

[58]  K. Singleton Estimation of affine asset pricing models using the empirical characteristic function , 2001 .

[59]  Gurdip Bakshi,et al.  Delta-Hedged Gains and the Negative Market Volatility Risk Premium , 2001 .

[60]  G. J. Jiang,et al.  Estimation of Continuous-Time Processes via the Empirical Characteristic Function , 2002 .

[61]  Yacine Ait-Sahalia Closed-Form Likelihood Expansions for Multivariate Diffusions , 2002, 0804.0758.

[62]  A. Gallant,et al.  Numerical Techniques for Maximum Likelihood Estimation of Continuous-Time Diffusion Processes , 2002 .

[63]  A. Gallant,et al.  Simulated Score Methods and Indirect Inference for Continuous-time Models , 2002 .

[64]  Jun Liu,et al.  An Equilibrium Model of Rare Event Premia , 2002 .

[65]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[66]  Yacine Aït-Sahalia,et al.  Closed-Form Likelihood Expansions for Multivariate Diffusions , 2002 .

[67]  J. Florens,et al.  Série Scientifique Scientific Series 2003 s-02 Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions , 2002 .

[68]  Nicholas G. Polson,et al.  Nonlinear Filtering of Stochastic Differential Equations with Jumps , 2002 .

[69]  Liuren Wu,et al.  Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes , 2003 .

[70]  Chris Kirby,et al.  A Closer Look at the Relation between GARCH and Stochastic Autoregressive Volatility , 2003 .

[71]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[72]  R. Bliss,et al.  Option-Implied Risk Aversion Estimates , 2004 .

[73]  Mukarram Attari Option Pricing Using Fourier Transforms: A Numerically Efficient Simplification , 2004 .

[74]  Jun Pan,et al.  An Equilibrium Model of Rare-Event Premia and Its Implication for Option Smirks , 2005 .

[75]  William B. White,et al.  All in the Family , 2005 .