Cell-cell signalling in bacteria: not simply a matter of quorum.

Bacterial signalling known as quorum sensing (QS) relies on the synthesis of autoinducing signals throughout growth; when a threshold concentration is reached, these signals interact with a transcriptional regulator, allowing the expression of specific genes at a high cell density. One of the most studied intraspecies signalling is based on the use of N-acyl-homoserine lactones (AHL). Many factors other than cell density were shown to affect AHL accumulation and interfere with the QS signalling process. At the cellular level, the genetic determinants of QS are integrated in a complex regulatory network, including QS cascades and various transcriptional and post-transcriptional regulators that affect the synthesis of the AHL signal. In complex environments where bacteria exist, AHL do not accumulate at a constant rate; the diffusion and perception of the AHL signal outside bacterial cells can be compromised by abiotic environmental factors, by members of the bacterial community such as AHL-degrading bacteria and also by compounds produced by eukaryotes acting as an AHL mimic or inhibitor. This review aims to present all factors interfering with the AHL-mediated signalling process, at the levels of signal production, diffusion and perception.

[1]  Lian-Hui Zhang Quorum quenching and proactive host defense. , 2003, Trends in plant science.

[2]  Lian-Hui Zhang,et al.  Species Bacillus Homoserine Lactonases from-Acyl N Identification of Quorum-Quenching , 2002 .

[3]  M. Merighi,et al.  Chlamydomonas reinhardtii Secretes Compounds That Mimic Bacterial Signals and Interfere with Quorum Sensing Regulation in Bacteria1 , 2004, Plant Physiology.

[4]  E. Allain,et al.  Degradation pathway of homoserine lactone bacterial signal molecules by halogen antimicrobials identified by liquid chromatography with photodiode array and mass spectrometric detection. , 2000, Journal of chromatography. A.

[5]  A. Aertsen,et al.  N-acyl-L-homoserine lactone signal interception by Escherichia coli. , 2006, FEMS microbiology letters.

[6]  J. Michiels,et al.  The cin Quorum Sensing Locus of Rhizobium etli CNPAF512 Affects Growth and Symbiotic Nitrogen Fixation* , 2002, The Journal of Biological Chemistry.

[7]  M. Winson,et al.  Multiple homologues of LuxR and LuxI control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1 , 1995, Molecular microbiology.

[8]  S. Chevalier,et al.  Thermoregulation of N-Acyl Homoserine Lactone-Based Quorum Sensing in the Soft Rot Bacterium Pectobacterium atrosepticum , 2007, Applied and Environmental Microbiology.

[9]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[10]  L. Eberl,et al.  Visualization of N-Acylhomoserine Lactone-Mediated Cell-Cell Communication between Bacteria Colonizing the Tomato Rhizosphere , 2001, Applied and Environmental Microbiology.

[11]  C. Reimmann,et al.  The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N‐butyryl‐homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase , 1997, Molecular microbiology.

[12]  R. Rosen,et al.  GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Greenberg,et al.  Mutational analysis of the Vibrio fischeri LuxI polypeptide: critical regions of an autoinducer synthase , 1997, Journal of bacteriology.

[14]  P. Schröder,et al.  Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants , 2007, Analytical and bioanalytical chemistry.

[15]  S. Kjelleberg,et al.  Do marine natural products interfere with prokaryotic AHL regulatory systems , 1997 .

[16]  P. Williams,et al.  N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. , 2005, Microbiology.

[17]  Yinping Qin,et al.  The Antiactivator TraM Interferes with the Autoinducer-dependent Binding of TraR to DNA by Interacting with the C-terminal Region of the Quorum-sensing Activator* , 2000, The Journal of Biological Chemistry.

[18]  E. Greenberg,et al.  A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa. , 2006, International journal of medical microbiology : IJMM.

[19]  Jung-Kee Lee,et al.  The role of AiiA, a quorum-quenching enzyme from Bacillus thuringiensis, on the rhizosphere competence. , 2008, Journal of microbiology and biotechnology.

[20]  B. Lugtenberg,et al.  Regulatory roles of psrA and rpoS in phenazine-1-carboxamide synthesis by Pseudomonas chlororaphis PCL1391. , 2006, Microbiology.

[21]  S. Farrand,et al.  Quorum Sensing but Not Autoinduction of Ti Plasmid Conjugal Transfer Requires Control by the Opine Regulon and the Antiactivator TraM , 2000, Journal of bacteriology.

[22]  S. Molin,et al.  Involvement of N‐acyl‐l‐homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens , 1996, Molecular microbiology.

[23]  P. Oger,et al.  Quorum-quenching Lactonases Defines a Novel Class of Large-spectrum -encoded Enzyme Rhodococcus Qsda a Supplemental Material , 2007 .

[24]  Margrith E. Mattmann,et al.  Control of Quorum Sensing by a Burkholderia pseudomallei Multidrug Efflux Pump , 2007, Journal of bacteriology.

[25]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[26]  D. Wood,et al.  Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density , 1994, Journal of bacteriology.

[27]  S. C. Winans,et al.  The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[28]  W. Fuqua,et al.  A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite , 1994, Journal of bacteriology.

[29]  M. Gao,et al.  sinI- and expR-Dependent Quorum Sensing in Sinorhizobium meliloti , 2005, Journal of bacteriology.

[30]  P. Williams,et al.  Functional interplay between the Yersinia pseudotuberculosis YpsRI and YtbRI quorum sensing systems modulates swimming motility by controlling expression of flhDC and fliA , 2008, Molecular microbiology.

[31]  H. Dyson,et al.  Structure of the Escherichia coli quorum sensing protein SdiA: activation of the folding switch by acyl homoserine lactones. , 2006, Journal of molecular biology.

[32]  B. Iglewski,et al.  Transcriptome analysis of quorum-sensing regulation and virulence factor expression in Pseudomonas aeruginosa. , 2004, Vaccine.

[33]  A. Chatterjee,et al.  PsrA, the Pseudomonas Sigma Regulator, Controls Regulators of Epiphytic Fitness, Quorum-Sensing Signals, and Plant Interactions in Pseudomonas syringae pv. tomato Strain DC3000 , 2007, Applied and Environmental Microbiology.

[34]  I. Joint,et al.  Cross-kingdom signalling: exploitation of bacterial quorum sensing molecules by the green seaweed Ulva , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  L. Eberl,et al.  Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. , 2006, Plant, cell & environment.

[36]  G. Pessi,et al.  The Global Posttranscriptional Regulator RsmA Modulates Production of Virulence Determinants andN-Acylhomoserine Lactones in Pseudomonas aeruginosa , 2001, Journal of bacteriology.

[37]  S. E. West,et al.  Vfr controls quorum sensing in Pseudomonas aeruginosa , 1997, Journal of bacteriology.

[38]  F. Wisniewski-Dyé,et al.  Quorum-sensing in Rhizobium , 2002, Antonie van Leeuwenhoek.

[39]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: elements of the luxI promoter , 1999, Molecular microbiology.

[40]  G. Pessi,et al.  Transcriptional Control of the Hydrogen Cyanide Biosynthetic Genes hcnABC by the Anaerobic Regulator ANR and the Quorum-Sensing Regulators LasR and RhlR inPseudomonas aeruginosa , 2000, Journal of bacteriology.

[41]  Melanie M. Marketon,et al.  Identification of Two Quorum-Sensing Systems in Sinorhizobium meliloti , 2002, Journal of bacteriology.

[42]  Akiko Takaya,et al.  Negative Regulation of Quorum-Sensing Systems in Pseudomonas aeruginosa by ATP-Dependent Lon Protease , 2008, Journal of bacteriology.

[43]  P. Reeves,et al.  The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. , 1993, The EMBO journal.

[44]  S. Lewenza,et al.  Interspecies communication between Burkholderia cepacia and Pseudomonas aeruginosa. , 2002, Canadian journal of microbiology.

[45]  L. Eberl,et al.  A Marine Mesorhizobium sp. Produces Structurally Novel Long-Chain N-Acyl-l-Homoserine Lactones , 2007, Applied and Environmental Microbiology.

[46]  Steve Atkinson,et al.  N-Acylhomoserine Lactones Undergo Lactonolysis in a pH-, Temperature-, and Acyl Chain Length-Dependent Manner during Growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa , 2002, Infection and Immunity.

[47]  The Pseudomonas putida Lon protease is involved in N-acyl homoserine lactone quorum sensing regulation , 2007, BMC Microbiology.

[48]  M. Teplitski,et al.  Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. , 2000, Molecular plant-microbe interactions : MPMI.

[49]  J. Durner,et al.  Response of Arabidopsis thaliana to N-hexanoyl-dl-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere , 2008, Planta.

[50]  C. van Delden,et al.  Stringent Response Activates Quorum Sensing and Modulates Cell Density-Dependent Gene Expression inPseudomonas aeruginosa , 2001, Journal of bacteriology.

[51]  C. Keel,et al.  Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. , 2002, Microbiology.

[52]  G. Salmond,et al.  Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Hitoshi Sato,et al.  Superiority of varicella skin test antigen over purified varicella-zoster virus glycoproteins in monitoring booster response to Oka varicella vaccine. , 2003, Vaccine.

[54]  E. Pesci,et al.  Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). , 2004, FEMS microbiology letters.

[55]  Adam Baldwin,et al.  Characterization of the cciIR Quorum-Sensing System in Burkholderia cenocepacia , 2005, Infection and Immunity.

[56]  E. Greenberg,et al.  Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Lian-Hui Zhang,et al.  Quorum quenching enzyme activity is widely conserved in the sera of mammalian species , 2005, FEBS letters.

[58]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: essential elements for activation of the luminescence genes , 1997, Journal of bacteriology.

[59]  J. Arbiser,et al.  Solenopsin A, a venom alkaloid from the fire ant Solenopsis invicta, inhibits quorum-sensing signaling in Pseudomonas aeruginosa. , 2008, The Journal of infectious diseases.

[60]  A. Eberhard,et al.  Characterization of the Sinorhizobium meliloti sinR/sinI Locus and the Production of Novel N-Acyl Homoserine Lactones , 2002, Journal of bacteriology.

[61]  J. Costerton,et al.  Gene Expression in Pseudomonas aeruginosa: Evidence of Iron Override Effects on Quorum Sensing and Biofilm-Specific Gene Regulation , 2001, Journal of bacteriology.

[62]  Kathrine B. Christensen,et al.  Identity and effects of quorum-sensing inhibitors produced by Penicillium species. , 2005, Microbiology.

[63]  E. Pesci,et al.  Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[64]  D. Wheeler,et al.  The Pseudomonas aeruginosaQuorum-Sensing Signal MoleculeN-(3-Oxododecanoyl)-l-Homoserine Lactone Has Immunomodulatory Activity , 1998, Infection and Immunity.

[65]  R. Reid,et al.  Autoinducers extracted from microbial mats reveal a surprising diversity of N-acylhomoserine lactones (AHLs) and abundance changes that may relate to diel pH. , 2009, Environmental microbiology.

[66]  A. Brooks,et al.  Microarray Analysis of Pseudomonas aeruginosa Quorum-Sensing Regulons: Effects of Growth Phase and Environment , 2003, Journal of bacteriology.

[67]  L. Eberl,et al.  Screening for Quorum-Sensing Inhibitors (QSI) by Use of a Novel Genetic System, the QSI Selector , 2005, Journal of bacteriology.

[68]  S. Molin,et al.  The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. , 2001, Microbiology.

[69]  H. Schweizer,et al.  Quorum-Sensing Signal Synthesis by the Yersinia pestis Acyl-Homoserine Lactone Synthase YspI , 2006, Journal of bacteriology.

[70]  M. Schell,et al.  Identification of 3‐hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in Ralstonia solanacearum , 1997, Molecular microbiology.

[71]  S. Lory,et al.  Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Jiayuan Liu,et al.  Secondary Metabolites Produced by the Marine Bacterium Halobacillus salinus That Inhibit Quorum Sensing-Controlled Phenotypes in Gram-Negative Bacteria , 2008, Applied and Environmental Microbiology.

[73]  Andrew B. Goryachev,et al.  Transition to Quorum Sensing in an Agrobacterium Population: A Stochastic Model , 2005, PLoS Comput. Biol..

[74]  J. Downie,et al.  Analysis of N-acyl homoserine-lactone quorum-sensing molecules made by different strains and biovars of Rhizobium leguminosarum containing different symbiotic plasmids , 2002 .

[75]  D. Wood,et al.  Two-Component Transcriptional Regulation of N -Acyl-Homoserine Lactone Production inPseudomonas aureofaciens , 1999, Applied and Environmental Microbiology.

[76]  K. Kerr,et al.  Comparative transcriptome analysis of Agrobacterium tumefaciens in response to plant signal salicylic acid, indole‐3‐acetic acid and γ‐amino butyric acid reveals signalling cross‐talk and Agrobacterium–plant co‐evolution , 2008, Cellular microbiology.

[77]  S. Kjelleberg,et al.  A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. , 2000, Environmental microbiology.

[78]  F. Wisniewski-Dyé,et al.  Analysis of Quorum-Sensing-Dependent Control of Rhizosphere-Expressed (rhi) Genes in Rhizobium leguminosarum bv. viciae , 1999, Journal of bacteriology.

[79]  M K Winson,et al.  Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules , 1997, Journal of bacteriology.

[80]  S. C. Winans,et al.  TrlR, a defective TraR‐like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR:TraR dimers , 2001, Molecular microbiology.

[81]  F. Wisniewski-Dyé,et al.  The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum‐sensing loci , 2000, Molecular microbiology.

[82]  L. Eberl,et al.  Global regulation of quorum sensing and virulence by VqsR in Pseudomonas aeruginosa. , 2004, Microbiology.

[83]  Jung-Kee Lee,et al.  Identification of Extracellular N-Acylhomoserine Lactone Acylase from a Streptomyces sp. and Its Application to Quorum Quenching , 2005, Applied and Environmental Microbiology.

[84]  Margret I. Moré,et al.  Enzymatic Synthesis of a Quorum-Sensing Autoinducer Through Use of Defined Substrates , 1996, Science.

[85]  B. Kazmierczak,et al.  Mutational Analysis of RetS, an Unusual Sensor Kinase-Response Regulator Hybrid Required for Pseudomonas aeruginosa Virulence , 2006, Infection and Immunity.

[86]  J. Leadbetter,et al.  Utilization of homoserine lactone as a sole source of carbon and energy by soil Arthrobacter and Burkholderia species , 2006, Archives of Microbiology.

[87]  T. Bisseling,et al.  Symbiotic Nitrogen Fixation. , 1995, The Plant cell.

[88]  G. Caetano-Anollés,et al.  Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[89]  F. Wisniewski-Dyé,et al.  N-Acyl-Homoserine Lactone Inhibition of Rhizobial Growth Is Mediated by Two Quorum-Sensing Genes That Regulate Plasmid Transfer , 2002, Journal of bacteriology.

[90]  Jared R. Leadbetter,et al.  Utilization of Acyl-Homoserine Lactone Quorum Signals for Growth by a Soil Pseudomonad and Pseudomonas aeruginosa PAO1 , 2003, Applied and Environmental Microbiology.

[91]  S. Lindow,et al.  Two Dissimilar N-Acyl-Homoserine Lactone Acylases of Pseudomonas syringae Influence Colony and Biofilm Morphology , 2008, Applied and Environmental Microbiology.

[92]  D. Faure,et al.  The Ti Plasmid of Agrobacterium tumefaciens Harbors an attM-Paralogous Gene, aiiB, Also Encoding N-Acyl Homoserine Lactonase Activity , 2003, Applied and Environmental Microbiology.

[93]  O. Zaborina,et al.  Recognition of Host Immune Activation by Pseudomonas aeruginosa , 2005, Science.

[94]  J. Costerton,et al.  Influence of Hydrodynamics and Cell Signaling on the Structure and Behavior of Pseudomonas aeruginosa Biofilms , 2002, Applied and Environmental Microbiology.

[95]  Frank Bernhard,et al.  The autoregulatory role of EsaR, a quorum‐sensing regulator in Pantoea stewartii ssp. stewartii: evidence for a repressor function , 2002, Molecular microbiology.

[96]  K. Chua,et al.  The Burkholderia pseudomallei BpeAB-OprB Efflux Pump: Expression and Impact on Quorum Sensing and Virulence , 2005, Journal of bacteriology.

[97]  E. Greenberg,et al.  Quorum-Sensing Signals and Quorum-Sensing Genes in Burkholderia vietnamiensis , 2002, Journal of bacteriology.

[98]  Leo Eberl,et al.  Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. , 2002, Microbiology.

[99]  P. Williams,et al.  Comprehensive profiling of N-acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole–linear ion trap mass spectrometry , 2007, Analytical and bioanalytical chemistry.

[100]  L. Eberl,et al.  Two GacA-Dependent Small RNAs Modulate the Quorum-Sensing Response in Pseudomonas aeruginosa , 2006, Journal of bacteriology.

[101]  G. Salmond,et al.  Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora: the VirR repressor , 2006, Molecular microbiology.

[102]  S. Kjelleberg,et al.  Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. , 2002, Microbiology.

[103]  M. Gao,et al.  Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium , 2003, Archives of Microbiology.

[104]  E. Allain,et al.  Reaction of Acylated Homoserine Lactone Bacterial Signaling Molecules with Oxidized Halogen Antimicrobials , 2001, Applied and Environmental Microbiology.

[105]  E. Greenberg,et al.  A Distinct QscR Regulon in the Pseudomonas aeruginosa Quorum-Sensing Circuit , 2006, Journal of bacteriology.

[106]  Tobin J Dickerson,et al.  Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[107]  M. Surette,et al.  Environmental Regulation of Pseudomonas aeruginosa PAO1 Las and Rhl Quorum-Sensing Systems , 2007, Journal of bacteriology.

[108]  S. Lindow,et al.  Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface , 2008, Proceedings of the National Academy of Sciences.

[109]  P. Cornelis,et al.  Characterization of a new efflux pump, MexGHI-OpmD, from Pseudomonas aeruginosa that confers resistance to vanadium. , 2002, Microbiology.

[110]  R. Ulrich,et al.  Role of quorum sensing in the pathogenicity of Burkholderia pseudomallei. , 2004, Journal of medical microbiology.

[111]  I. Lamont,et al.  Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. , 2003, Microbiology.

[112]  K. Tanaka,et al.  A hierarchical quorum‐sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary‐phase sigma factor RpoS , 1996, Molecular microbiology.

[113]  S. Pongor,et al.  Plant Growth-Promoting Pseudomonas putida WCS358 Produces and Secretes Four Cyclic Dipeptides: Cross-Talk with Quorum Sensing Bacterial Sensors , 2002, Current Microbiology.

[114]  K. Xavier,et al.  The role of small RNAs in quorum sensing. , 2007, Current opinion in microbiology.

[115]  D. Shih,et al.  Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. , 2007, American journal of physiology. Lung cellular and molecular physiology.

[116]  D. Vidal,et al.  The PmlI-PmlR Quorum-Sensing System in Burkholderia pseudomallei Plays a Key Role in Virulence and Modulates Production of the MprA Protease , 2004, Journal of bacteriology.

[117]  E. Greenberg,et al.  Signalling: Listening in on bacteria: acyl-homoserine lactone signalling , 2002, Nature Reviews Molecular Cell Biology.

[118]  E. Greenberg,et al.  The two‐component response regulator PprB modulates quorum‐sensing signal production and global gene expression in Pseudomonas aeruginosa , 2005, Molecular microbiology.

[119]  Jung-Kee Lee,et al.  Genes Encoding the N-Acyl Homoserine Lactone-Degrading Enzyme Are Widespread in Many Subspecies of Bacillus thuringiensis , 2002, Applied and Environmental Microbiology.

[120]  Lian-Hui Zhang,et al.  Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[121]  R. Kolter,et al.  Microbial sciences: The superficial life of microbes , 2006, Nature.

[122]  S. Farrand,et al.  The BlcC (AttM) Lactonase of Agrobacterium tumefaciens Does Not Quench the Quorum-Sensing System That Regulates Ti Plasmid Conjugative Transfer , 2008, Journal of bacteriology.

[123]  R. Redfield Is quorum sensing a side effect of diffusion sensing? , 2002, Trends in microbiology.

[124]  G. Salmond,et al.  Quorum sensing in Erwinia species , 2007, Analytical and bioanalytical chemistry.

[125]  E. P. Greenberg,et al.  Metabolism of Acyl-Homoserine Lactone Quorum-Sensing Signals by Variovorax paradoxus , 2000, Journal of bacteriology.

[126]  E. Greenberg,et al.  Quorum Sensing in Burkholderia cepacia: Identification of the LuxRI Homologs CepRI , 1999, Journal of bacteriology.

[127]  M. Uyttendaele,et al.  Effect of temperature and glucose concentration on the N-butanoyl-L-homoserine lactone production by Aeromonas hydrophila. , 2006, Food microbiology.

[128]  P. Dunlap,et al.  Control of Vibrio fischeri luminescence gene expression in Escherichia coli by cyclic AMP and cyclic AMP receptor protein , 1985, Journal of bacteriology.

[129]  S. C. Winans,et al.  Autoinducer binding by the quorum-sensing regulator TraR increases affinity for target promoters in vitro and decreases TraR turnover rates in whole cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[130]  R. Barth,et al.  Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. , 2006, Trends in microbiology.

[131]  L. Pierson,et al.  Quorum Sensing and Phenazines are Involved in Biofilm Formation by Pseudomonas chlororaphis (aureofaciens) Strain 30-84 , 2006, Microbial Ecology.

[132]  J. Andrews,et al.  Colonial architecture in mixed species assemblages affects AHL mediated gene expression. , 2005, FEMS microbiology letters.

[133]  S. Atkinson,et al.  A hierarchical quorum‐sensing system in Yersinia pseudotuberculosis is involved in the regulation of motility and clumping , 1999, Molecular microbiology.

[134]  S. Kjelleberg,et al.  Eukaryotic interference with homoserine lactone-mediated prokaryotic signalling , 1996, Journal of bacteriology.

[135]  M. Sebaihia,et al.  Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. , 1995, Microbiology.

[136]  P. Sokol,et al.  Expression of the bviIR and cepIR Quorum-Sensing Systems of Burkholderia vietnamiensis , 2007, Journal of bacteriology.

[137]  W. Streit,et al.  Metagenome-Derived Clones Encoding Two Novel Lactonase Family Proteins Involved in Biofilm Inhibition in Pseudomonas aeruginosa , 2008, Applied and Environmental Microbiology.

[138]  D. Moreira,et al.  A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. , 2008, Environmental microbiology.

[139]  A. Edwards,et al.  Recipient‐induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum‐sensing relay , 2003, Molecular microbiology.

[140]  A. Zeng,et al.  Expression of the quorum-sensing regulatory protein LasR is strongly affected by iron and oxygen concentrations in cultures of Pseudomonas aeruginosa irrespective of cell density. , 2005, Microbiology.

[141]  A. Collmer,et al.  GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. , 2003, Molecular plant-microbe interactions : MPMI.

[142]  D. Wood,et al.  Homoserine lactone-mediated gene regulation in plant-associated bacteria. , 1998, Annual review of phytopathology.

[143]  P. Seed,et al.  Activation of the Pseudomonas aeruginosa lasI gene by LasR and the Pseudomonas autoinducer PAI: an autoinduction regulatory hierarchy , 1995, Journal of bacteriology.

[144]  R. Bally,et al.  A quorum-quenching approach to identify quorum-sensing-regulated functions in Azospirillum lipoferum. , 2008, Research in Microbiology.

[145]  S. Molin,et al.  N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. , 2001, Microbiology.

[146]  M. Gao,et al.  Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[147]  J. Michiels,et al.  luxI- and luxR-Homologous Genes of Rhizobium etli CNPAF512 Contribute to Synthesis of Autoinducer Molecules and Nodulation of Phaseolus vulgaris , 1998, Journal of bacteriology.

[148]  G. Boşgelmez-Tinaz,et al.  Quorum Sensing in Gram-Negative Bacteria , 2003 .

[149]  Paul Stoodley,et al.  The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities , 2006, Analytical and bioanalytical chemistry.

[150]  E. Greenberg,et al.  The C-terminal region of the Vibrio fischeri LuxR protein contains an inducer-independent lux gene activating domain. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[151]  D. Coplin,et al.  A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[152]  D. Allison,et al.  Influence of Pseudomonas aeruginosa exoproducts on virulence factor production in Burkholderia cepacia: evidence of interspecies communication , 1995, Journal of bacteriology.

[153]  M. Vasil,et al.  GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes , 2002, Molecular microbiology.

[154]  A. Edwards,et al.  The cin and rai Quorum-Sensing Regulatory Systems in Rhizobium leguminosarum Are Coordinated by ExpR and CinS, a Small Regulatory Protein Coexpressed with CinI , 2009, Journal of bacteriology.

[155]  R. Haley,et al.  Dominant Role of Paraoxonases in Inactivation of the Pseudomonas aeruginosa Quorum-Sensing Signal N-(3-Oxododecanoyl)-l-Homoserine Lactone , 2008, Infection and Immunity.

[156]  S. Rice,et al.  Quorum‐sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram‐negative bacteria , 1999, Molecular microbiology.

[157]  Burkhard A. Hense,et al.  Does efficiency sensing unify diffusion and quorum sensing? , 2007, Nature Reviews Microbiology.

[158]  B. Iglewski,et al.  Active Efflux and Diffusion Are Involved in Transport of Pseudomonas aeruginosa Cell-to-Cell Signals , 1999, Journal of bacteriology.

[159]  E. Greenberg,et al.  Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system , 1985, Journal of bacteriology.

[160]  J. Ramos,et al.  Gene expression in Pseudomonas , 1993, World journal of microbiology & biotechnology.

[161]  Juan E. González,et al.  l-Canavanine Made by Medicago sativa Interferes with Quorum Sensing in Sinorhizobium meliloti , 2005, Journal of bacteriology.

[162]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[163]  J. Bigirimana,et al.  The presence, type and role of N-acyl homoserine lactone quorum sensing in fluorescent Pseudomonas originally isolated from rice rhizospheres are unpredictable. , 2008, FEMS microbiology letters.

[164]  M. Sebaihia,et al.  Carbapenem antibiotic biosynthesis in Erwinia carotovora is regulated by physiological and genetic factors modulating the quorum sensing‐dependent control pathway , 2004, Molecular microbiology.

[165]  D. Velegol,et al.  Localized quorum sensing in Vibrio fischeri. , 2008, Colloids and surfaces. B, Biointerfaces.

[166]  E. Greenberg,et al.  Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis , 2003, Journal of bacteriology.

[167]  B. Iglewski,et al.  Quorum-Sensing Genes in Pseudomonas aeruginosa Biofilms: Their Role and Expression Patterns , 2001, Applied and Environmental Microbiology.

[168]  V. Venturi,et al.  Pseudomonas aeruginosa relA Contributes to Virulence in Drosophila melanogaster , 2004, Infection and Immunity.

[169]  Say Leong Ong,et al.  Acyl‐homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum‐quenching enzymes , 2003, Molecular microbiology.

[170]  F. Wisniewski-Dyé,et al.  raiIR Genes Are Part of a Quorum-Sensing Network Controlled by cinI and cinR in Rhizobium leguminosarum , 2002, Journal of bacteriology.

[171]  Jared R. Leadbetter,et al.  Identification of QuiP, the Product of Gene PA1032, as the Second Acyl-Homoserine Lactone Acylase of Pseudomonas aeruginosa PAO1 , 2006, Applied and Environmental Microbiology.

[172]  A. Eberhard,et al.  Quorum Sensing Controls Exopolysaccharide Production in Sinorhizobium meliloti , 2003, Journal of bacteriology.

[173]  E. Ruby,et al.  Vibrio fischeri LuxS and AinS: Comparative Study of Two Signal Synthases , 2004, Journal of bacteriology.

[174]  D. Faure,et al.  The assimilation of gamma-butyrolactone in Agrobacterium tumefaciens C58 interferes with the accumulation of the N-acyl-homoserine lactone signal. , 2004, Molecular plant-microbe interactions : MPMI.

[175]  S. Lewenza,et al.  Regulation of Ornibactin Biosynthesis andN-Acyl-l-Homoserine Lactone Production by CepR in Burkholderia cepacia , 2001, Journal of bacteriology.

[176]  P. Dunlap,et al.  Regulation of luminescence by cyclic AMP in cya-like and crp-like mutants of Vibrio fischeri , 1989, Journal of bacteriology.

[177]  A. Zeng,et al.  Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. , 2003, Microbiology.

[178]  Sang Jun Lee,et al.  AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. , 2003, Microbiology.

[179]  M. Welch,et al.  Nonenzymatic Turnover of an Erwinia carotovora Quorum-Sensing Signaling Molecule , 2002, Journal of bacteriology.

[180]  Roger S Smith,et al.  Implications for Inflammation Production in Human Lung Fibroblasts: 2EInduces Cyclooxygenase-2 and Prostaglandin -(3-Oxododecanoyl) Homoserine Lactone N Autoinducer Pseudomonas The , 2002 .

[181]  Zhongge Zhang,et al.  A Second Quorum-Sensing System Regulates Cell Surface Properties but Not Phenazine Antibiotic Production inPseudomonas aureofaciens , 2001, Applied and Environmental Microbiology.

[182]  E. Greenberg,et al.  Human and murine paraoxonase 1 are host modulators of Pseudomonas aeruginosa quorum-sensing. , 2005, FEMS microbiology letters.

[183]  P. Murphy,et al.  Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones , 1993, Nature.

[184]  E. Greenberg,et al.  Quorum sensing in Vibrio fischeri: evidence that S-adenosylmethionine is the amino acid substrate for autoinducer synthesis , 1996, Journal of bacteriology.

[185]  P. Garbeva,et al.  Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. , 2006, Canadian journal of microbiology.

[186]  Lian-Hui Zhang,et al.  AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora , 2000 .

[187]  D. Faure,et al.  Diversity of N-acyl homoserine lactone-producing and -degrading bacteria in soil and tobacco rhizosphere. , 2005, Environmental microbiology.

[188]  G. Walker,et al.  A LuxR Homolog Controls Production of Symbiotically Active Extracellular Polysaccharide II by Sinorhizobium meliloti , 2002, Journal of bacteriology.

[189]  D. Faure,et al.  N-hexanoyl-L-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. , 2005, FEMS microbiology ecology.

[190]  Matthew R. Parsek,et al.  Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms , 2000, Nature.

[191]  C. Prasad Bioactive cyclic dipeptides , 1995, Peptides.

[192]  M. Schell,et al.  Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester , 1997, Journal of bacteriology.

[193]  J. Mattick,et al.  Differential Regulation of Twitching Motility and Elastase Production by Vfr in Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[194]  S. Rice,et al.  Inhibition of Luminescence and Virulence in the Black Tiger Prawn (Penaeus monodon) Pathogen Vibrio harveyi by Intercellular Signal Antagonists , 2000, Applied and Environmental Microbiology.