A modified Mach-Zehnder experiment to test the applicability of quantum theory to single-particle experiments

We propose a modified single-particle Mach-Zehnder interferometer experiment in which the path length of one arm may change (randomly or systematically) according to the value of an external two-valued variable x, for each passage of a particle through the interferometer. Quantum theory predicts an interference pattern that is independent of the sequence of the values of x. On the other hand, corpuscular models that reproduce the results of quantum optics experiments carried out up to this date show a reduced visibility and a shift of the interference pattern depending on the details of the sequence of the values of x. The key question to be answered in a real laboratory experiment is: Which interference pattern is observed? Despite the general believe that quantum theory might be used to describe all single particle experiments, this is an interesting question to be answered since in the proposed experiment the experimental conditions not only continuously change but they might also have causal effects on the passage of the photons through the interferometer. The proposed experiment can be used to determine to what extent quantum theory provides a description of observed events beyond the usual statistical level.

[1]  Philippe Grangier,et al.  Single-photon wavefront-splitting interference , 2005, 2011.12664.

[2]  H. De Raedt,et al.  Simulation of Quantum Computation: A deterministic event-based approach , 2005, quant-ph/0501140.

[3]  H. Raedt,et al.  Coexistence of full which-path information and interference in Wheeler's delayed-choice experiment with photons , 2009, 0908.1032.

[4]  Quantitative wave-particle duality and nonerasing quantum erasure , 1999, quant-ph/9908072.

[5]  C. Jönsson,et al.  Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten , 1961 .

[6]  Carnal,et al.  Young's double-slit experiment with atoms: A simple atom interferometer. , 1991, Physical review letters.

[7]  Philippe Grangier,et al.  Experimental Realization of Wheeler's Delayed-Choice Gedanken Experiment , 2006, Science.

[8]  Kristel Michielsen,et al.  Deterministic event-based simulation of quantum phenomena , 2005, Comput. Phys. Commun..

[9]  A. Zeilinger,et al.  Matter-wave interferometer for large molecules. , 2002, Physical review letters.

[10]  K. Michielsen,et al.  A local realist model for correlations of the singlet state , 2006 .

[11]  F. Jin,et al.  Event-by-Event Simulation of the Hanbury Brown-Twiss Experiment with Coherent Light , 2009, 0908.1040.

[12]  Kristel Michielsen,et al.  Event-based simulation of light propagation in lossless dielectric media , 2011, Comput. Phys. Commun..

[13]  C. R. Stroud,et al.  Young's double-slit interferometry within an atom. , 1995 .

[14]  J. Summhammer,et al.  Static versus time-dependent absorption in neutron interferometry , 1984 .

[15]  G. Pozzi,et al.  On the statistical aspect of electron interference phenomena , 1976 .

[16]  A. Penin,et al.  High-visibility multiphoton interference of Hanbury Brown-Twiss type for classical light , 2008, 0801.0881.

[17]  F. Jin,et al.  Event-Based Corpuscular Model for Quantum Optics Experiments , 2010, 1006.1728.

[18]  Keith,et al.  An interferometer for atoms. , 1991, Physical review letters.

[19]  P. Grangier,et al.  Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences , 1986 .

[20]  H. Raedt,et al.  Event-by-event Simulation of Quantum Cryptography Protocols ∗ , 2007, 0708.1734.

[21]  H. De Raedt,et al.  Event-based simulation of single-photon beam splitters and Mach-Zehnder interferometers , 2005 .

[22]  Anton Zeilinger,et al.  Wave–particle duality of C60 molecules , 1999, Nature.

[23]  Kristel Michielsen,et al.  A computer program to simulate Einstein-Podolsky-Rosen-Bohm experiments with photons , 2007, Comput. Phys. Commun..

[24]  R. Hadfield Single-photon detectors for optical quantum information applications , 2009 .

[25]  F. Feng,et al.  Reply to "Comment on , 1977 .

[26]  P. Grangier,et al.  Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment : A New Violation of Bell's Inequalities , 1982 .

[27]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[28]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[29]  K. Michielsen,et al.  Reply to comment on “A local realist model for correlations of the singlet state" by M.P. Seevinck and J.-Å. Larsson , 2007, 0706.2957.

[30]  Dipankar Home,et al.  Conceptual Foundations Of Quantum Physics , 1997 .

[31]  Kristel Michielsen,et al.  Event-by-Event Simulation of Einstein-Podolsky-Rosen-Bohm Experiments , 2007, 0712.3693.

[32]  Eugene D. Commins,et al.  Polarization Correlation of Photons Emitted in an Atomic Cascade , 1967 .

[33]  Louis de Broglie,et al.  Recherches sur la théorie des quanta , 1925 .

[34]  S. Miyashita,et al.  Event-Based Computer Simulation Model of Aspect-Type Experiments Strictly Satisfying Einstein's Locality Conditions , 2007, 0712.2565.

[35]  L. Ballentine Quantum mechanics : a modern development , 1998 .

[36]  Anton Zeilinger,et al.  Single- and double-slit diffraction of neutrons , 1988 .

[37]  Tsuyoshi Matsuda,et al.  Demonstration of single‐electron buildup of an interference pattern , 1989 .

[38]  J. Lynn,et al.  Neutron Interferometry: Lessons in Experimental Quantum Mechanics , 2002 .

[39]  K.,et al.  New Method to Simulate Quantum Interference Using Deterministic Processes and Application to Event-based Simulation of Quantum Computation , 2005 .

[40]  S. Miyashita,et al.  Event-by-event simulation of quantum phenomena : Application to Einstein-Podolosky-Rosen-Bohm experiments , 2007, 0712.3781.

[41]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[42]  S. Miyashita,et al.  Corpuscular Model of Two-Beam Interference and Double-Slit Experiments with Single Photons , 2010, 1005.0906.

[43]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[44]  H. De Raedt,et al.  Computer simulation of Wheeler's delayed-choice experiment with photons , 2007, 0712.1606.

[45]  R. Feynman QED: The Strange Theory of Light and Matter , 1985 .