Topology optimization of structures under multiple loading cases with a new compliance–volume product

This article proposes a new topology optimization method for the design of structures under multiple loading cases. The design is formulated as a multi-objective optimization problem by minimizing a new compliance–volume product, which optimizes the overall stiffness and volume simultaneously to avoid the empirical decision on design constraints and obtain an even lower structural volume. A normalized exponential weighted criterion (NEWC) method is included in the multi-objective optimization problem for the capture of the entire Pareto frontier. A weight evaluation method, in terms of the fuzzy multiple-attribute group decision-making (FMAGDM) theory, is incorporated in the problem to evaluate the weights of the objectives and guarantee the optimal design in an acceptable level. The solid isotropic material with penalty (SIMP) method is used to represent the dependence of elemental densities on material properties. Three typical numerical examples are employed to show the effectiveness of the proposed method.

[1]  Pasi Tanskanen,et al.  The evolutionary structural optimization method: theoretical aspects , 2002 .

[2]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[3]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[4]  Andrew B. Templeman,et al.  ENTROPY-BASED SYNTHESIS OF PRETENSIONED CABLE NET STRUCTURES , 1989 .

[5]  M. Bendsøe,et al.  Optimal design of material properties and material distribution for multiple loading conditions , 1995 .

[6]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[7]  Joaquim R. R. A. Martins,et al.  Structural topology optimization for multiple load cases using a dynamic aggregation technique , 2009 .

[8]  Niclas Strömberg,et al.  Topology optimization of structures with manufacturing and unilateral contact constraints by minimizing an adjustable compliance–volume product , 2010 .

[9]  Peide Liu,et al.  A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers , 2011, Expert Syst. Appl..

[10]  O. Querin,et al.  Extended optimality in topology design , 2002 .

[11]  S. Shojaee,et al.  A Level Set Method for Structural Shape and Topology Optimization Using Radial Basis Functions , 2011 .

[12]  B. Bourdin Filters in topology optimization , 2001 .

[13]  R. Marler,et al.  The weighted sum method for multi-objective optimization: new insights , 2010 .

[14]  K. Abdel-Malek,et al.  Compliant mechanism design using multi-objective topology optimization scheme of continuum structures , 2005 .

[15]  Saeid Abbasbandy,et al.  A new approach for ranking of trapezoidal fuzzy numbers , 2009, Comput. Math. Appl..

[16]  Shyi-Ming Chen,et al.  Fuzzy risk analysis based on interval-valued fuzzy numbers , 2009, Expert Syst. Appl..

[17]  M. Y. Wang,et al.  An enhanced genetic algorithm for structural topology optimization , 2006 .

[18]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[19]  N. Olhoff,et al.  Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives , 1999 .

[20]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[21]  G. Rozvany Traditional vs. extended optimality in topology optimization , 2009 .

[22]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .

[23]  H. Rodrigues,et al.  Multiobjective topology optimization of structures using genetic algorithms with chromosome repairing , 2006 .

[24]  Karim Abdel-Malek,et al.  Fuzzy tolerance multilevel approach for structural topology optimization , 2006 .

[25]  Sujin Bureerat,et al.  Multi-objective topology optimization using evolutionary algorithms , 2011 .

[26]  Achille Messac,et al.  Required relationship between objective function and Pareto frontier orders - Practical implications , 2001 .

[27]  Francisco Herrera,et al.  Multiperson decision-making based on multiplicative preference relations , 2001, Eur. J. Oper. Res..

[28]  Glynn J. Sundararaj,et al.  Ability of Objective Functions to Generate Points on Nonconvex Pareto Frontiers , 2000 .

[29]  P. Papalambros,et al.  A NOTE ON WEIGHTED CRITERIA METHODS FOR COMPROMISE SOLUTIONS IN MULTI-OBJECTIVE OPTIMIZATION , 1996 .

[30]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[31]  Bo K. Wong,et al.  A survey of the application of fuzzy set theory in production and operations management: 1998-2009 , 2011 .

[32]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[33]  Andrew D. Back,et al.  Radial Basis Functions , 2001 .

[34]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[35]  Ronald R. Yager,et al.  Modeling the concept of majority opinion in group decision making , 2006, Inf. Sci..

[36]  Zhen Luo,et al.  A new multi-objective programming scheme for topology optimization of compliant mechanisms , 2009 .

[37]  George I. N. Rozvany,et al.  A critical review of established methods of structural topology optimization , 2009 .

[38]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[39]  George I. N. Rozvany,et al.  Structural and Multidisciplinary Optimization , 1995 .

[40]  Krishnan Suresh,et al.  A 199-line Matlab code for Pareto-optimal tracing in topology optimization , 2010 .

[41]  Francisco Herrera,et al.  Managing non-homogeneous information in group decision making , 2005, Eur. J. Oper. Res..

[42]  H. A. Kim,et al.  An evaluative study on ESO and SIMP for optimising a cantilever tie—beam , 2007 .