A dual neural network for constrained joint torque optimization of kinematically redundant manipulators

A dual neural network is presented for the real-time joint torque optimization of kinematically redundant manipulators, which corresponds to global kinetic energy minimization of robot mechanisms. Compared to other computational strategies on inverse kinematics, the dual network is developed at the acceleration level to resolve redundancy of limited-joint-range manipulators. The dual network has a simple architecture with only one layer of neurons and is proved to be globally exponentially convergent to optimal solutions. The dual neural network is simulated with the PUMA 560 robot arm to demonstrate effectiveness.

[1]  Hee-Jun Kang,et al.  Null space damping method for local joint torque optimization of redundant manipulators , 1993, J. Field Robotics.

[2]  Jun Wang,et al.  Global exponential stability of recurrent neural networks for solving optimization and related problems , 2000, IEEE Trans. Neural Networks Learn. Syst..

[3]  Shugen Ma,et al.  A balancing technique to stabilize local torque optimization solution of redundant manipulators , 1996, J. Field Robotics.

[4]  Jun Wang,et al.  Two Recurrent Neural Networks for Local Joint Torque Optimization of Kinematically Redundant Manipulators , 2022 .

[5]  Shugen Ma,et al.  A new formulation technique for local torque optimization of redundant manipulators , 1996, IEEE Trans. Ind. Electron..

[6]  Danchi Jiang,et al.  A Lagrangian network for kinematic control of redundant robot manipulators , 1999, IEEE Trans. Neural Networks.

[7]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[8]  Jun Wang,et al.  A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Peter I. Corke,et al.  A search for consensus among model parameters reported for the PUMA 560 robot , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[10]  Jun Wang,et al.  Global asymptotic and exponential stability of a dynamic neural system with asymmetric connection weights , 2001, IEEE Trans. Autom. Control..

[11]  John M. Hollerbach,et al.  Local versus global torque optimization of redundant manipulators , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[12]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[13]  J. Pang,et al.  On a Generalization of a Normal Map and Equation , 1995 .

[14]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[15]  O. Mangasarian Solution of symmetric linear complementarity problems by iterative methods , 1977 .

[16]  Tien C. Hsia,et al.  Obstacle avoidance inverse kinematics solution of redundant robots by neural networks , 1997, Robotica.

[17]  S. K. Tso,et al.  A fully neural-network-based planning scheme for torque minimization of redundant manipulators , 1999, IEEE Trans. Ind. Electron..

[18]  A. Nedungadi,et al.  A Local Solution with Global Characteristics for the Joint Torque Optimization of a Redundant Manipulator , 1989 .

[19]  Han Ding,et al.  Redundancy resolution of robotic manipulators with neural computation , 1999, IEEE Trans. Ind. Electron..

[20]  Ian D. Walker,et al.  Minimum effort inverse kinematics for redundant manipulators , 1997, IEEE Trans. Robotics Autom..

[21]  Bruno Siciliano,et al.  Modeling and Control of Robot Manipulators , 1995 .

[22]  Jun Wang,et al.  A dual neural network for kinematic control of redundant robot manipulators , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Wu Li,et al.  A New Algorithm for Solving Strictly Convex Quadratic Programs , 1997, SIAM J. Optim..