Flexible modelling techniques and use of historical controls in animal studies

[1]  R. Beckman,et al.  Two-sided tolerance limits for balanced random-effects ANOVA models , 1989 .

[2]  N. Heckman Bump hunting in regression analysis , 1992 .

[3]  W. Cleveland,et al.  Computational methods for local regression , 1991 .

[4]  I. Dunsmore Growth Curves in Two‐Period Change Over Models , 1981 .

[5]  Chen-Tuo Liao,et al.  A TOLERANCE INTERVAL FOR THE NORMAL DISTRIBUTION WITH SEVERAL VARIANCE COMPONENTS , 2004 .

[6]  P. McCullagh,et al.  Bias Correction in Generalized Linear Models , 1991 .

[7]  UsingSmoothing SplinesbyXihong Liny,et al.  Inference in Generalized Additive Mixed Models , 1999 .

[8]  Stephen Senn,et al.  Cross-over trials in clinical research , 1993 .

[9]  James H Thrall,et al.  Using imaging biomarkers to accelerate drug development and clinical trials. , 2005, Drug discovery today.

[10]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[11]  M. Wand,et al.  Smoothing with Mixed Model Software , 2004 .

[12]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[13]  Geert Molenberghs,et al.  Evaluation of Surrogate Endpoints , 2006, Handbook of Statistical Methods for Randomized Controlled Trials.

[14]  R. Kass,et al.  Statistical smoothing of neuronal data. , 2003, Network.

[15]  M. Wand,et al.  Simple fitting of subject‐specific curves for longitudinal data , 2005, Statistics in medicine.

[16]  U. Dafni,et al.  Modeling the Progression of HIV Infection , 1991 .

[17]  Simon N. Wood,et al.  On confidence intervals for GAMs based on penalized regression splines , 2004 .

[18]  Robert E Kass,et al.  Statistical issues in the analysis of neuronal data. , 2005, Journal of neurophysiology.

[19]  Reference ranges for screening preclinical drug safety data. , 1997, Journal of biopharmaceutical statistics.

[20]  David Ruppert,et al.  Theory & Methods: Spatially‐adaptive Penalties for Spline Fitting , 2000 .

[21]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[22]  J G Ibrahim,et al.  Use of historical controls in time-adjusted trend tests for carcinogenicity. , 1996, Biometrics.

[23]  L Ryan,et al.  Using historical controls in the analysis of developmental toxicity data. , 1993, Biometrics.

[24]  H. Akaike Maximum likelihood identification of Gaussian autoregressive moving average models , 1973 .

[25]  M. Wand,et al.  General design Bayesian generalized linear mixed models , 2006, math/0606491.

[26]  Geert Verbeke,et al.  Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles , 2006, Biometrics.

[27]  Takashi Yanagawa,et al.  Incorporating historical controls using a random-effects model with a normal prior , 1991 .

[28]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[29]  J. Nelder,et al.  Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood , 2006 .

[30]  N. Breslow,et al.  Bias correction in generalised linear mixed models with a single component of dispersion , 1995 .

[31]  Robert E Kass,et al.  Testing equality of two functions using BARS. , 2005, Statistics in medicine.

[32]  Andrew Thomas,et al.  WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility , 2000, Stat. Comput..

[33]  Russell D. Wolfinger,et al.  Tolerance Intervals for Variance Component Models Using Bayesian Simulation , 1998 .

[34]  W. D. Johnson,et al.  Fitting multivariate polynomial growth curves in two-period crossover designs. , 1994, Statistics in medicine.

[35]  D. Ruppert,et al.  Spatially Adaptive Bayesian Penalized Splines With Heteroscedastic Errors , 2007 .

[36]  R. Kass,et al.  Bayesian curve-fitting with free-knot splines , 2001 .

[37]  Geert Molenberghs,et al.  A unifying approach for surrogate marker validation based on Prentice's criteria , 2006, Statistics in medicine.

[38]  G. Molenberghs,et al.  Models for Discrete Longitudinal Data , 2005 .

[39]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[40]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[41]  Geert Molenberghs,et al.  The Use of Score Tests for Inference on Variance Components , 2003, Biometrics.

[42]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[43]  Dulal K. Bhaumik,et al.  A Simple and Exact Method of Constructing Tolerance Intervals for the One-Way ANOVA with Random Effects , 1996 .

[44]  Abraham Wald,et al.  Setting of Tolerance Limits When the Sample is Large , 1942 .

[45]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[46]  M. Wand,et al.  Incorporation of historical controls using semiparametric mixed models , 2001 .

[47]  C. Acuña,et al.  Discrimination of line orientation in humans and monkeys. , 2000, Journal of neurophysiology.

[48]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[49]  Franklin A. Graybill,et al.  'Exact' Two-Sided Confidence Intervals on Nonnegative Linear Combinations of Variances. , 1980 .

[50]  V M Chinchilli,et al.  A mixed effects model for the analysis of repeated measures cross-over studies. , 1999, Statistics in medicine.

[51]  R. Tarone,et al.  The Use of Historical Control Information in Testing for a Trend in Proportions , 1982 .

[52]  J. Ibrahim,et al.  Using Historical Controls to Adjust for Covariates in Trend Tests for Binary Data , 1998 .

[53]  B. Graubard,et al.  Statistical validation of intermediate endpoints for chronic diseases. , 1992, Statistics in medicine.

[54]  J. K. Ord,et al.  Statistical Tolerance Regions: Classical and Bayesian , 1971 .

[55]  Ciprian M. Crainiceanu,et al.  Bayesian Analysis for Penalized Spline Regression Using WinBUGS , 2005 .

[56]  Robert W. Mee,et al.  One-Sided Tolerance Limits for Balanced One-Way ANOVA Random Model. , 1982 .

[57]  J. Marron,et al.  SiZer for Exploration of Structures in Curves , 1999 .

[58]  G. Molenberghs,et al.  Criteria for the validation of surrogate endpoints in randomized experiments. , 1998, Biometrics.

[59]  C. Acuña,et al.  A Flexible Method to Measure Synchrony in Neuronal Firing , 2008 .

[60]  S. S. Wilks Determination of Sample Sizes for Setting Tolerance Limits , 1941 .

[61]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[62]  R. Prentice Surrogate endpoints in clinical trials: definition and operational criteria. , 1989, Statistics in medicine.

[63]  G L GERSTEIN,et al.  An approach to the quantitative analysis of electrophysiological data from single neurons. , 1960, Biophysical journal.

[64]  C. Crainiceanu,et al.  Fast Adaptive Penalized Splines , 2008 .

[65]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[66]  Matthew P. Wand,et al.  Feature significance in generalized additive models , 2007, Stat. Comput..

[67]  G. Wahba Improper Priors, Spline Smoothing and the Problem of Guarding Against Model Errors in Regression , 1978 .

[68]  Veerabhadran Baladandayuthapani,et al.  Spatially Adaptive Bayesian Penalized Regression Splines (P-splines) , 2005 .

[69]  A. Dempster,et al.  Combining Historical and Randomized Controls for Assessing Trends in Proportions , 1983 .

[70]  J. Friedman,et al.  FLEXIBLE PARSIMONIOUS SMOOTHING AND ADDITIVE MODELING , 1989 .

[71]  G. Molenberghs,et al.  The validation of surrogate endpoints in meta-analyses of randomized experiments. , 2000, Biostatistics.

[72]  P. McCullagh,et al.  Generalized Linear Models , 1984 .

[73]  P. Royston,et al.  Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling. , 1994 .

[74]  Daniel Commenges,et al.  Bivariate linear mixed models using SAS proc MIXED , 2002, Comput. Methods Programs Biomed..

[75]  Geert Molenberghs,et al.  Validation of surrogate markers in multiple randomized clinical trials with repeated measurements: canonical correlation approach. , 2004 .

[76]  C. Acuña,et al.  Bootstrap‐based methods for testing factor‐by‐curve interactions in generalized additive models: assessing prefrontal cortex neural activity related to decision‐making , 2006, Statistics in medicine.

[77]  Abraham Wald,et al.  An Extension of Wilks' Method for Setting Tolerance Limits , 1943 .

[78]  Adrian Bowman,et al.  On the Use of Nonparametric Regression for Checking Linear Relationships , 1993 .

[79]  S. Lang,et al.  Bayesian P-Splines , 2004 .

[80]  N. Laird,et al.  Long𝒞ri𝒮𝒫: a test for bump hunting in longitudinal data , 2007, Statistics in medicine.

[81]  Wensheng Guo Functional Mixed Effects Models , 2002 .

[82]  M. Kenward,et al.  Design and Analysis of Cross-Over Trials , 1989 .

[83]  M. Kenward,et al.  The Analysis of Designed Experiments and Longitudinal Data by Using Smoothing Splines , 1999 .

[84]  Tom Fearn,et al.  A Bayesian approach to growth curves , 1975 .

[85]  S. Wallenstein,et al.  The analysis of the two-period repeated measurements crossover design with application to clinical trials. , 1977, Biometrics.

[86]  Robert W. Mee β-Expectation and β-Content Tolerance Limits for Balanced One-Way ANOVA Random Model , 1984 .

[87]  Luis A. Escobar,et al.  Statistical Intervals: A Guide for Practitioners , 1991 .

[88]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[89]  D. Cox Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .

[90]  R. Kass,et al.  Statistical analysis of temporal evolution in single-neuron firing rates. , 2002, Biostatistics.

[91]  C. Acuña,et al.  Flexible modeling of neuron firing rates across different experimental conditions: an application to neural activity in the prefrontal cortex during a discriminatino task , 2006 .

[92]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[93]  M. Wand,et al.  Exact likelihood ratio tests for penalised splines , 2005 .

[94]  Jeffrey D. Hart,et al.  Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .

[95]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[96]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[97]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[98]  Robert W. Mee Normal Distribution Tolerance Limits for Stratified Random Samples , 1989 .

[99]  J. Wolfowitz,et al.  Tolerance Limits for a Normal Distribution , 1946 .

[100]  Irène Gijbels,et al.  Tests for monotonicity of a regression mean with guaranteed level , 2000 .

[101]  Robert E. Kass,et al.  Hierarchical models for assessing variability among functions , 2005 .

[102]  R. Tibshirani,et al.  Generalized Additive Models , 1991 .

[103]  L. D. Groote,et al.  Exposure to novelty and forced swimming evoke stressor-dependent changes in extracellular GABA in the rat hippocampus , 2007, Neuroscience.

[104]  David Hoffman,et al.  TWO-SIDED TOLERANCE INTERVALS FOR BALANCED AND UNBALANCED RANDOM EFFECTS MODELS , 2005, Journal of biopharmaceutical statistics.

[105]  F. Vaida,et al.  MODEL SELECTION FOR PENALIZED SPLINE SMOOTHING USING AKAIKE INFORMATION CRITERIA , 2007 .