Changes in RNA secondary structure affect NS1 protein expression during early stage influenza virus infection

[1]  M. Beer,et al.  NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems , 2018, Front. Microbiol..

[2]  Honglin Chen,et al.  An NS-segment exonic splicing enhancer regulates influenza A virus replication in mammalian cells , 2017, Nature Communications.

[3]  Steven F. Baker,et al.  Mutations Designed by Ensemble Defect to Misfold Conserved RNA Structures of Influenza A Segments 7 and 8 Affect Splicing and Attenuate Viral Replication in Cell Culture , 2016, PloS one.

[4]  V. Egorov,et al.  The influenza A virus NS genome segment displays lineage-specific patterns in predicted RNA secondary structure , 2016, BMC Research Notes.

[5]  L. Teixeira,et al.  Work ability and associated factors of Brazilian technical-administrative workers in education , 2016, BMC Research Notes.

[6]  V. Egorov,et al.  Molecular mechanisms enhancing the proteome of influenza A viruses: an overview of recently discovered proteins. , 2014, Virus research.

[7]  Walter N. Moss,et al.  Secondary Structure of a Conserved Domain in the Intron of Influenza A NS1 mRNA , 2013, PloS one.

[8]  E. Fodor,et al.  Emerging Roles for the Influenza A Virus Nuclear Export Protein (NEP) , 2012, PLoS pathogens.

[9]  Fabian J Theis,et al.  Supplemental Material to : , 2012 .

[10]  Richard H Scheuermann,et al.  Influenza Research Database: an integrated bioinformatics resource for influenza research and surveillance , 2012, Influenza and other respiratory viruses.

[11]  Anna Tranell,et al.  Inefficient splicing of segment 7 and 8 mRNAs is an inherent property of influenza virus A/Brevig Mission/1918/1 (H1N1) that causes elevated expression of NS1 protein. , 2012, Virology.

[12]  Walter N. Moss,et al.  Identification of potential conserved RNA secondary structure throughout influenza A coding regions. , 2011, RNA.

[13]  A. Gultyaev,et al.  A family of non-classical pseudoknots in influenza A and B viruses , 2010, RNA biology.

[14]  Dmitrij Frishman,et al.  Importance of mRNA secondary structural elements for the expression of influenza virus genes. , 2009, Omics : a journal of integrative biology.

[15]  Yoshihiro Kawaoka,et al.  Single-Reaction Genomic Amplification Accelerates Sequencing and Vaccine Production for Classical and Swine Origin Human Influenza A Viruses , 2009, Journal of Virology.

[16]  B. G. Hale,et al.  The multifunctional NS1 protein of influenza A viruses. , 2008, The Journal of general virology.

[17]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[18]  T. Tatusova,et al.  The Influenza Virus Resource at the National Center for Biotechnology Information , 2007, Journal of Virology.

[19]  Alexander P. Gultyaev,et al.  An RNA conformational shift in recent H5N1 influenza A viruses , 2007, Bioinform..

[20]  R. Webster,et al.  A DNA transfection system for generation of influenza A virus from eight plasmids. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Olsthoorn,et al.  A conformational switch at the 3′ end of a plant virus RNA regulates viral replication , 1999, The EMBO journal.

[22]  D. Levy,et al.  Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. , 1998, Virology.

[23]  H. Katinger,et al.  Transfectant Influenza A Viruses with Long Deletions in the NS1 Protein Grow Efficiently in Vero Cells , 1998, Journal of Virology.

[24]  J. F. Young,et al.  Efficient expression of influenza virus NS1 nonstructural proteins in Escherichia coli. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[25]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[26]  L. Reed,et al.  A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS , 1938 .

[27]  U. Baumann,et al.  An efficient one-step site-directed and site-saturation mutagenesis protocol. , 2004, Nucleic acids research.

[28]  H. Gross,et al.  Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels , 1987 .