Millikelvin cooling of an optically trapped microsphere in vacuum

Microscale resonators cooled so that their vibrational motion approaches the quantum limit enable the study of quantum effects in macroscopic systems. An approach that could probe the interface between quantum mechanics and general relativity is now demonstrated by using lasers to suspend a glass microsphere in a vacuum. Cooling of micromechanical resonators towards the quantum mechanical ground state in their centre-of-mass motion has advanced rapidly in recent years1,2,3,4,5,6,7,8. This work is an important step towards the creation of ‘Schrodinger cats’, quantum superpositions of macroscopic observables, and the study of their destruction by decoherence. Here we report optical trapping of glass microspheres in vacuum with high oscillation frequencies, and cooling of the centre-of-mass motion from room temperature to a minimum temperature of about 1.5 mK. This new system eliminates the physical contact inherent to clamped cantilevers, and can allow ground-state cooling from room temperature9,10,11,12,13,14,15. More importantly, the optical trap can be switched off, allowing a microsphere to undergo free-fall in vacuum after cooling15. This is ideal for studying the gravitational state reduction16,17,18,19, a manifestation of the apparent conflict between general relativity and quantum mechanics16,20. A cooled optically trapped object in vacuum can also be used to search for non-Newtonian gravity forces at small scales21, measure the impact of a single air molecule14 and even produce Schrodinger cats of living organisms9.

[1]  Diósi,et al.  Models for universal reduction of macroscopic quantum fluctuations. , 1989, Physical review. A, General physics.

[2]  M. Horányi,et al.  Photoelectric charging of dust particles in vacuum. , 2000, Physical review letters.

[3]  J. Ignacio Cirac,et al.  Optically Levitating Dielectrics in the Quantum Regime: Theory and Protocols , 2010, 1010.3109.

[4]  K. Vahala,et al.  Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction , 2006 .

[5]  R Kaltenbaek,et al.  Large quantum superpositions and interference of massive nanometer-sized objects. , 2011, Physical review letters.

[6]  Arthur Ashkin,et al.  Trapping of Atoms by Resonance Radiation Pressure , 1978 .

[7]  Khaled Karrai,et al.  Cavity cooling of a microlever , 2004, Nature.

[8]  T. Meyrath Experiments with Bose-Einstein condensation in an optical box , 2005 .

[9]  Bo Sun,et al.  Influence of nonconservative optical forces on the dynamics of optically trapped colloidal spheres: the fountain of probability. , 2008, Physical review letters.

[10]  E. Wright,et al.  All-optical optomechanics: an optical spring mirror. , 2010, Physical review letters.

[11]  A. Vrij,et al.  Monodisperse Colloidal Silica Spheres from Tetraalkoxysilanes: Particle Formation and Growth Mechanism , 1992 .

[12]  Kurt Jacobs,et al.  Feedback cooling of a nanomechanical resonator , 2003 .

[13]  Erik Lucero,et al.  Quantum ground state and single-phonon control of a mechanical resonator , 2010, Nature.

[14]  Kenneth R. Brown,et al.  A Two-dimensional Lattice Ion Trap for Quantum Simulation , 2007, 0809.2824.

[15]  M. Pinard,et al.  Cooling of a Mirror by Radiation Pressure , 1999 .

[16]  P. Barker,et al.  Doppler cooling a microsphere. , 2010, Physical review letters.

[17]  L. D. Hinkle,et al.  Pressure‐dependent damping of a particle levitated in vacuum , 1990 .

[18]  Arthur Ashkin,et al.  Optical levitation in high vacuum , 1976 .

[19]  S. A. Beresnev,et al.  Motion of a spherical particle in a rarefied gas. Part 2. Drag and thermal polarization , 1990, Journal of Fluid Mechanics.

[20]  S. Girvin,et al.  Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane , 2008, Nature.

[21]  M. Feng,et al.  Three-dimensional cooling and detection of a nanosphere with a single cavity , 2010, 1007.0827.

[22]  Arthur Ashkin,et al.  Feedback stabilization of optically levitated particles , 1977 .

[23]  Weber,et al.  Unified dynamics for microscopic and macroscopic systems. , 1986, Physical review. D, Particles and fields.

[24]  J. Ignacio Cirac,et al.  Toward quantum superposition of living organisms , 2009, 0909.1469.

[25]  M. N. Shneider,et al.  Cavity cooling of an optically trapped nanoparticle , 2009, 0910.1221.

[26]  Markus Aspelmeyer,et al.  Quantum optomechanics—throwing a glance [Invited] , 2010, 1005.5518.

[27]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[28]  M. Gorodetsky,et al.  Ultimate Q of optical microsphere resonators. , 1996, Optics letters.

[29]  F P Meyer,et al.  Temperature dependence of the extinction coefficient of fused silica for CO(2) laser wavelengths. , 1987, Applied optics.

[30]  Sylvain Gigan,et al.  Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes , 2007, 0705.1728.

[31]  D. Bouwmeester Sub-kelvin optical cooling of a micromechanical resonator , 2007 .

[32]  D. E. Changa,et al.  Cavity opto-mechanics using an optically levitated nanosphere , 2009 .

[33]  S. Hawking,et al.  General Relativity; an Einstein Centenary Survey , 1979 .

[34]  T. Oosterkamp,et al.  Towards an experimental test of gravity-induced quantum state reduction , 2007, 0706.3976.

[35]  B. Schrader,et al.  Uncertainties in temperature measurements of optically levitated single aerosol particles by Raman spectroscopy , 1999 .

[36]  John Kitching,et al.  Short-range force detection using optically cooled levitated microspheres. , 2010, Physical review letters.

[37]  T. Briant,et al.  Radiation-pressure cooling and optomechanical instability of a micromirror , 2006, Nature.

[38]  M. Raizen,et al.  Measurement of the Instantaneous Velocity of a Brownian Particle , 2010, Science.

[39]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[40]  S. Gigan,et al.  Self-cooling of a micromirror by radiation pressure , 2006, Nature.

[41]  D. Ganguli,et al.  Hydrolysis-condensation reactions of TEOS in the presence of acetic acid leading to the generation of glass-like silica microspheres in solution at room temperature , 2000 .

[42]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[43]  A. Trevitt,et al.  Calibration of a quadrupole ion trap for particle mass spectrometry , 2007 .

[44]  Lars Friedrich,et al.  Improved interferometric tracking of trapped particles using two frequency-detuned beams. , 2010, Optics letters.

[45]  T. Hänsch,et al.  Cooling of gases by laser radiation , 1975 .

[46]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[47]  Stefano Mancini,et al.  Optomechanical Cooling of a Macroscopic Oscillator by Homodyne Feedback , 1998 .

[48]  F. L. Walls,et al.  Radiation-Pressure Cooling of Bound Resonant Absorbers , 1978 .

[49]  Bolesh J. Skutnik,et al.  High-numerical-aperture silica core fibers , 2004, SPIE BiOS.