The origins and developments of sulfation-prone tyrosine-rich and acidic N- and C-terminal extensions of class ll and lll small leucine-rich repeat proteins shed light on connective tissue evolution in vertebrates

[1]  M. Karsdal,et al.  The good and the bad collagens of fibrosis – Their role in signaling and organ function , 2017, Advanced drug delivery reviews.

[2]  A. James,et al.  Fibromodulin reduces scar formation in adult cutaneous wounds by eliciting a fetal-like phenotype , 2017, Signal Transduction and Targeted Therapy.

[3]  E. Hohenester,et al.  Structural and functional analysis of two small leucine-rich repeat proteoglycans, fibromodulin and chondroadherin , 2017, Matrix biology : journal of the International Society for Matrix Biology.

[4]  P. Bayer,et al.  Determinants of tyrosylprotein sulfation coding and substrate specificity of tyrosylprotein sulfotransferases in metazoans. , 2016, Chemico-biological interactions.

[5]  K. Ting,et al.  Fibromodulin Is Essential for Fetal-Type Scarless Cutaneous Wound Healing. , 2016, The American journal of pathology.

[6]  M. Mörgelin,et al.  The Tyrosine Sulfate Domain of Fibromodulin Binds Collagen and Enhances Fibril Formation* , 2016, The Journal of Biological Chemistry.

[7]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[8]  K. Tsumoto,et al.  Osteomodulin regulates diameter and alters shape of collagen fibrils. , 2015, Biochemical and biophysical research communications.

[9]  D. Brooks,et al.  Proteomic analysis of equine amniotic membrane: characterization of proteins. , 2015, Veterinary ophthalmology.

[10]  M. Al-Ubaidi,et al.  Complement Factor H, Vitronectin, and Opticin Are Tyrosine-Sulfated Proteins of the Retinal Pigment Epithelium , 2014, PloS one.

[11]  Emil Alexov,et al.  Structural and energetic determinants of tyrosylprotein sulfotransferase sulfation specificity , 2014, Bioinform..

[12]  D. Birk,et al.  The regulatory roles of small leucine‐rich proteoglycans in extracellular matrix assembly , 2013, The FEBS journal.

[13]  M. Wendel,et al.  The glycosylation profile of osteoadherin alters during endochondral bone formation. , 2013, Bone.

[14]  Makoto Kimura,et al.  Crystal structure of human tyrosylprotein sulfotransferase-2 reveals the mechanism of protein tyrosine sulfation reaction , 2013, Nature Communications.

[15]  A. Hamad,et al.  Extracellular Matrix Lumican Promotes Bacterial Phagocytosis, and Lum−/− Mice Show Increased Pseudomonas aeruginosa Lung Infection Severity* , 2012, The Journal of Biological Chemistry.

[16]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[17]  A. Oldberg,et al.  The role of small leucine-rich proteoglycans in collagen fibrillogenesis. , 2010, Matrix biology : journal of the International Society for Matrix Biology.

[18]  K. Weiss,et al.  Biomineralization in humans: making the hard choices in life. , 2009, Annual review of genetics.

[19]  L. Schaefer,et al.  The matricellular functions of small leucine-rich proteoglycans (SLRPs) , 2009, Journal of Cell Communication and Signaling.

[20]  D. Heinegård,et al.  The Tyrosine Sulfate-rich Domains of the LRR Proteins Fibromodulin and Osteoadherin Bind Motifs of Basic Clusters in a Variety of Heparin-binding Proteins, Including Bioactive Factors* , 2009, The Journal of Biological Chemistry.

[21]  M. Shoham,et al.  Tyrosine sulfation: an increasingly recognised post-translational modification of secreted proteins. , 2009, New biotechnology.

[22]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[23]  T. Attwood,et al.  LRRCE: a leucine-rich repeat cysteine capping motif unique to the chordate lineage , 2008, BMC Genomics.

[24]  C. Wasternack,et al.  Glutaminyl cyclases from animals and plants: a case of functionally convergent protein evolution , 2008, Biological chemistry.

[25]  R. Iozzo,et al.  Biological Functions of the Small Leucine-rich Proteoglycans: From Genetics to Signal Transduction* , 2008, Journal of Biological Chemistry.

[26]  Y. Toyama,et al.  Osteoclastic activity induces osteomodulin expression in osteoblasts. , 2007, Biochemical and biophysical research communications.

[27]  Yonghao Yu,et al.  Determination of the sites of tyrosine O-sulfation in peptides and proteins , 2007, Nature Methods.

[28]  J. Enghild,et al.  Proteolytic Activities of Human ADAMTS-5 , 2007, Journal of Biological Chemistry.

[29]  Eugen Damoc,et al.  Detection and Purification of Tyrosine-sulfated Proteins Using a Novel Anti-sulfotyrosine Monoclonal Antibody* , 2006, Journal of Biological Chemistry.

[30]  Hanno Steen,et al.  Protein sulfation analysis--A primer. , 2006, Biochimica et biophysica acta.

[31]  P. McEwan,et al.  Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans. , 2006, Journal of structural biology.

[32]  J. Y. Kuwada,et al.  Molecular cloning and expression of two small leucine-rich proteoglycan (SLRP) genes, dspg3l and optcl, in zebrafish. , 2006, Gene expression patterns : GEP.

[33]  Iain M. Wallace,et al.  M-Coffee: combining multiple sequence alignment methods with T-Coffee , 2006, Nucleic acids research.

[34]  D. Bidwell,et al.  Formation , 2006, Revue Francophone d'Orthoptie.

[35]  R. Agarwala,et al.  Protein database searches using compositionally adjusted substitution matrices , 2005, The FEBS journal.

[36]  Anna M. Blom,et al.  The Extracellular Matrix and Inflammation , 2005, Journal of Biological Chemistry.

[37]  Munirah Ahmad,et al.  Cleavage of Lumican by Membrane-Type Matrix Metalloproteinase-1 Abrogates This Proteoglycan-Mediated Suppression of Tumor Cell Colony Formation in Soft Agar , 2004, Cancer Research.

[38]  D. Greenspan,et al.  Bone Morphogenetic Protein-1/Tolloid-related Metalloproteinases Process Osteoglycin and Enhance Its Ability to Regulate Collagen Fibrillogenesis* , 2004, Journal of Biological Chemistry.

[39]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[40]  H. Sasamura,et al.  Functional characterization of podocan, a member of a new class in the small leucine‐rich repeat protein family , 2004, FEBS letters.

[41]  D. Heinegård,et al.  Cleavage of Fibromodulin in Cartilage Explants Involves Removal of the N-terminal Tyrosine Sulfate-rich Region by Proteolysis at a Site That Is Sensitive to Matrix Metalloproteinase-13* , 2004, Journal of Biological Chemistry.

[42]  D. Heinegård,et al.  Identification of Tyrosine Sulfation in Extracellular Leucine-rich Repeat Proteins Using Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[43]  Paul G Scott,et al.  Characterization of Opticin and Evidence of Stable Dimerization in Solution* , 2003, Journal of Biological Chemistry.

[44]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[45]  D. Heinegård,et al.  Tissue distribution of a novel cell binding protein, osteoadherin, in the rat. , 1999, Matrix biology : journal of the International Society for Matrix Biology.

[46]  D. Heinegård,et al.  Bone Matrix Proteins: Isolation and Characterization of a Novel Cell-binding Keratan Sulfate Proteoglycan (Osteoadherin) from Bovine Bone , 1998, The Journal of cell biology.

[47]  E. Tasheva,et al.  Mimecan, the 25-kDa Corneal Keratan Sulfate Proteoglycan, Is a Product of the Gene Producing Osteoglycin* , 1997, The Journal of Biological Chemistry.

[48]  J. Rehfeld,et al.  New Consensus Features for Tyrosine O-Sulfation Determined by Mutational Analysis* , 1997, The Journal of Biological Chemistry.

[49]  L. Rosenberg,et al.  Characterization of Epiphycan, a Small Proteoglycan with a Leucine-rich Repeat Core Protein* , 1997, The Journal of Biological Chemistry.

[50]  T. McCaffrey,et al.  Transforming growth factor‐β1 is a heparin‐binding protein: Identification of putative heparin‐binding regions and isolation of heparins with varying affinity for TGF‐β1 , 1992 .

[51]  C. Niehrs,et al.  Analysis of the substrate specificity of tyrosylprotein sulfotransferase using synthetic peptides. , 1990, The Journal of biological chemistry.

[52]  W. Huttner,et al.  Occurrence of tyrosine sulfate in proteins--a balance sheet. 1. Secretory and lysosomal proteins. , 1990, European journal of biochemistry.

[53]  W. Huttner,et al.  Tyrosine sulfation of yolk proteins 1, 2, and 3 in Drosophila melanogaster. , 1985, The Journal of biological chemistry.

[54]  David L Robertson,et al.  On the origins of the extracellular matrix in vertebrates. , 2007, Matrix biology : journal of the International Society for Matrix Biology.

[55]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[56]  T. McCaffrey,et al.  Transforming growth factor-beta 1 is a heparin-binding protein: identification of putative heparin-binding regions and isolation of heparins with varying affinity for TGF-beta 1. , 1992, Journal of cellular physiology.