Pilot plant performance of rubbery polymeric membranes for carbon dioxide separation from syngas

Abstract Pre-combustion carbon capture separates carbon dioxide from syngas before combustion. Rubbery polymeric membranes offer the ability to separate carbon dioxide from syngas, and in particular hydrogen, with reasonable selectivity. Here, the gas separation performance of three rubbery polymeric membranes, poly dimethyl siloxane (PDMS), cross-linked polyethylene glycol (PEG) and poly (ether-b-amide) (PEBAX 2533), are reported upon exposure to real unshifted syngas, as part of the CO2CRC Mulgrave capture project. At low temperatures, all three membranes were able to separate CO 2 from syngas; however competitive sorption by other syngas components significantly altered their performance relative to reported laboratory results. For PDMS, under syngas conditions CO 2 permeability was reduced compared to the pure gas permeability, but CO 2 /H 2 and CO 2 /N 2 selectivity were improved in the presence of syngas. This resulted in good CO 2 separation performance for this membrane. However over 24 h of exposure the performance decreased somewhat. In contrast, both PEG and PEBAX membranes demonstrated poor CO 2 separation performance upon exposure to syngas. In particular, low CO 2 /H 2 selectivities where observed, indicating that both membranes upon exposure to syngas had poor selective ability.

[1]  E. Drioli,et al.  Transport properties of a co-poly(amide-12-b-ethylene oxide) membrane: A comparative study between experimental and molecular modelling results , 2008 .

[2]  T. Merkel,et al.  Mixed Gas Permeation of Syngas Components in Poly (dimethylsiloxane) and Poly (1-trimethylsilyl-1-propyne) at Elevated Temperatures , 2001 .

[3]  Clare Anderson,et al.  Novel pre-combustion capture technologies in action–Results of the CO2CRC/HRL Mulgrave capture project , 2011 .

[4]  Matthias Wessling,et al.  Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes , 2005 .

[5]  B. Freeman,et al.  MATERIALS SELECTION GUIDELINES FOR MEMBRANES THAT REMOVE CO2 FROM GAS MIXTURES , 2005 .

[6]  Colin A. Scholes,et al.  Effects of Minor Components in Carbon Dioxide Capture Using Polymeric Gas Separation Membranes , 2009 .

[7]  A. Car,et al.  Tailor‐made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation , 2008 .

[8]  T. Merkel,et al.  Gas sorption, diffusion, and permeation in poly(dimethylsiloxane) , 2000 .

[9]  Colin A. Scholes,et al.  Water vapor permeation in polyimide membranes , 2011 .

[10]  R. Lattimer Mass spectral analysis of low-temperature pyrolysis products from poly(ethylene glycol) , 2000 .

[11]  A. Penlidis,et al.  Gas Permeation Through Poly(Ether‐b‐amide) (PEBAX 2533) Block Copolymer Membranes , 2005 .

[12]  B. Metz IPCC special report on carbon dioxide capture and storage , 2005 .

[13]  Dc Kitty Nijmeijer,et al.  Mixed water vapor/gas transport through the rubbery polymer PEBAX® 1074 , 2009 .

[14]  M Bracht,et al.  Water gas shift membrane reactor for CO2 control in IGCC systems: techno-economic feasibility study , 1997 .

[15]  Geoff W. Stevens,et al.  CO2 capture from pre-combustion processes—Strategies for membrane gas separation , 2010 .

[16]  F. Faupel,et al.  Gas permeability and free volume in poly(amide-b-ethylene oxide)/ polyethylene glycol blend membranes , 2009 .

[17]  Barry Hooper,et al.  Demonstrating carbon capture , 2009 .

[18]  S. Kentish,et al.  The effect of hydrogen sulfide, carbon monoxide and water on the performance of a PDMS membrane in carbon dioxide/nitrogen separation , 2010 .

[19]  B. Freeman,et al.  Transport of Gases and Vapors in Glassy and Rubbery Polymers , 2006 .

[20]  S. Kentish,et al.  The effect of condensable minor components on the gas separation performance of polymeric membranes for carbon dioxide capture , 2009 .

[21]  S. Funari,et al.  SAXS and the Gas Transport in Polyether-$block$ -polyamide Copolymer Membranes , 2003 .

[22]  Matthias Wessling,et al.  Flue gas dehydration using polymer membranes , 2008 .

[23]  Olav Kaarstad,et al.  CO2 capture by pre-combustion decarbonisation of natural Gas , 1999 .

[24]  Suzanne Shelley,et al.  Capturing CO2 : Membrane Systems Move Forward , 2009 .

[25]  Benny D. Freeman,et al.  Gas Permeation and Diffusion in Cross-Linked Poly(ethylene glycol diacrylate) , 2006 .

[26]  F. Poncin‐Epaillard,et al.  CO2 Permeation with Pebax®‐based Membranes for Global Warming Reduction , 2010 .

[27]  K. Nagai,et al.  Polymer Membranes for Hydrogen Separations , 2006 .

[28]  Massimo Lazzari,et al.  Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects , 2001 .

[29]  K. Nagai,et al.  Operating temperature effects on the plasticization of polyimide gas separation membranes , 2007 .

[30]  Evaluation of CO2 permeation through functional assembled mono-layers: Relationships between structure and transport , 2005 .

[31]  Douglass S. Kalika,et al.  The Effect of Cross-Linking on Gas Permeability in Cross-Linked Poly(Ethylene Glycol Diacrylate) , 2005 .

[32]  Robert M. Enick,et al.  The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers , 2011 .

[33]  G. C. Sarti,et al.  Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(dimethylsiloxane) , 2007 .

[34]  Benny D. Freeman,et al.  Gas solubility, diffusivity and permeability in poly(ethylene oxide) , 2004 .

[35]  Benny D. Freeman,et al.  Gas and Vapor Solubility in Cross-Linked Poly(ethylene Glycol Diacrylate) , 2005 .

[36]  V. Bondar,et al.  Gas transport properties of poly(ether-b-amide) segmented block copolymers , 2000 .

[37]  Tai‐Shung Chung,et al.  Polymeric membranes for the hydrogen economy: Contemporary approaches and prospects for the future , 2009 .