Structural characterization of fluorophosphate glasses using NMR methodologies

MOREIRA, R.J.S. Structural characterization of fluorophosphate glasses using NMR methodologies 2014. 84 p. Dissertation (Master in Science) Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, 2014. In this work was studied the development of structure/property correlations for new fluorophosphate glasses compositions: [80Ba(PO3)2 – 20Al(PO3)3]1-x[80BaF2 – 20AlF3]x(0 ≤ x ≤ 40 mol%). Most suitable techniques for the structural analysis in case of disordered and amorphous material are Nuclear Magnetic Resonance (NMR) Spectroscopy and Raman scattering. Results from X-ray diffraction (XRD) and differential thermal analysis (DTA) reveal that amorphous samples were obtained for all glass compositions up to x ≤ 30. However, the fluorine quantification via F MAS NMR suggests significant fluoride loss and/or fluoride/oxide replacement. Both P and Raman results indicate gradual conversion of Qm units to Q 1 m units with increasing the fluorine concentration. F MAS NMR spectra indicate fluorine atoms in two different chemical environments bonded wither covalently to P-atoms or located in a mixed Al/Ba environment. The P-F assignment is confirmed by F{P}REDOR experiments. Al NMR spectra shows dominantly six-coordinated aluminium, and the Al{P}-REDOR data suggest nearly exclusive coordination of Al with phosphate species. The dipolar coupling constant obtained by P{P}-DRENAR are roughly consistent with P spectral deconvolution suggesting the presence of Qand Q species.

[1]  H. Eckert,et al.  DQ-DRENAR: a new NMR technique to measure site-resolved magnetic dipole-dipole interactions in multispin-1∕2 systems: theory and validation on crystalline phosphates. , 2013, The Journal of chemical physics.

[2]  Hellmut Eckert,et al.  A homonuclear rotational echo double-resonance method for measuring site-resolved distance distributions in I=½ spin pairs, clusters, and multispin systems. , 2012, Angewandte Chemie.

[3]  Thomas C. Farrar,et al.  Pulse and Fourier Transform NMR: Introduction to Theory and Methods , 2012 .

[4]  Rashmi R. Deshpande,et al.  Cation Distribution and Local Order in Mixed Sodium Metaphosphate Glasses , 2012 .

[5]  Virginie Nazabal,et al.  Fluoride and oxyfluoride glasses for optical applications , 2012 .

[6]  Ioannis Konidakis,et al.  Structure and Properties of Mixed Strontium−Manganese Metaphosphate Glasses , 2010 .

[7]  Anmin Zheng,et al.  19F Chemical Shift of Crystalline Metal Fluorides: Theoretical Predictions Based on Periodic Structure Models , 2009 .

[8]  H. Yagi,et al.  Diode-pumped ultrashort-pulse generation based on Yb(3+):Sc(2)O(3) and Yb(3+):Y(2)O(3) ceramic multi-gain-media oscillator. , 2009, Optics express.

[9]  C. Magon,et al.  Structural Role of Fluoride in the Ion-Conducting Glass System B2O3-PbO-LiF Studied by Single-and Double-Resonance NMR , 2008 .

[10]  L. Wüllen,et al.  The structure of aluminophosphate glasses revisited: Application of modern solid state NMR strategies to determine structural motifs on intermediate length scales , 2008 .

[11]  H. Eckert,et al.  Structural role of fluoride in aluminophosphate sol-gel glasses: high-resolution double-resonance NMR studies. , 2007, The journal of physical chemistry. B.

[12]  J. C. Phillips,et al.  Onset of rigidity in glasses: From random to self-organized networks , 2006, cond-mat/0609732.

[13]  M. Duer Introduction to Solid-State NMR Spectroscopy , 2005 .

[14]  H. Eckert,et al.  A New Sol−Gel Route to Aluminum Fluoride Phosphate Glasses: Mechanistic Investigations by NMR Spectroscopy , 2005 .

[15]  H. Yagi,et al.  Diode-pumped mode-locked Yb3+:Y2O3 ceramic laser. , 2004, Optics express.

[16]  Shunsuke Hosokawa,et al.  Diode-pumped mode-locked Yb(3+):Lu(2)O(3) ceramic laser. , 2003, Optics express.

[17]  Doris Ehrt,et al.  Fluoroaluminate glasses for lasers and amplifiers , 2003 .

[18]  S. Ribeiro,et al.  Scandium fluorophosphate glasses: a structural approach , 2002 .

[19]  J. Stebbins,et al.  Fluorine sites in calcium and barium oxyfluorides: F-19 NMR on crystalline model compounds and glasses , 2002 .

[20]  K. J. Rao,et al.  Structural Chemistry of Glasses , 2002 .

[21]  J. Adam,et al.  Fluorine in optics , 2002 .

[22]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[23]  H. Eckert,et al.  High-resolution 27Al–19F solid-state double resonance NMR studies of AlF3–BaF2–CaF2 glasses , 2001 .

[24]  M. Pruski,et al.  A study of short and intermediate range order in zinc phosphate glasses , 2001 .

[25]  D. Descamps,et al.  Excited-state absorption and up-conversion losses in the Nd doped glasses for high power lasers , 2000, Conference on Lasers and Electro-Optics-Europe.

[26]  D. Ehrt,et al.  UV Transmission and radiation-induced defects in phosphate and fluoride–phosphate glasses , 2000 .

[27]  H. Eckert,et al.  Dephasing of spin echoes by multiple heteronuclear dipolar interactions in rotational echo double resonance NMR experiments. , 1999, Solid state nuclear magnetic resonance.

[28]  L. Frydman,et al.  Multiple - quantum magic - angle spinning NMR: a new technique for probing quadrupolar nuclei in solids , 1999 .

[29]  Matthew John Dejneka,et al.  The luminescence and structure of novel transparent oxyfluoride glass-ceramics , 1998 .

[30]  T. Gullion Introduction to rotational-echo, double-resonance NMR , 1998 .

[31]  M. Hohwy,et al.  Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: A compensated C7 pulse sequence , 1998 .

[32]  J. Amoureux,et al.  Triple, quintuple and higher order multiple quantum MAS NMR of quadrupolar nuclei. , 1998, Solid state nuclear magnetic resonance.

[33]  J. Schaefer,et al.  REDOR dephasing by multiple spins in the presence of molecular motion. , 1997, Journal of magnetic resonance.

[34]  Steuernagel,et al.  Z Filtering in MQMAS NMR , 1996, Journal of magnetic resonance. Series A.

[35]  L. Frydman,et al.  Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids , 1995 .

[36]  Nicholas F. Borrelli,et al.  Transparent glass ceramics for 1300 nm amplifier applications , 1995 .

[37]  Fuxi Gan,et al.  Optical properties of fluoride glasses: a review , 1995 .

[38]  K. Mueller Analytic Solutions for the Time Evolution of Dipolar-Dephasing NMR Signals , 1995 .

[39]  K. Nishimura,et al.  Inter- and intra-molecular contributions of neighboring dipolar pairs to the precise determination of interatomic distances in a simple [13C, 15N]-peptide by 13C, 15N-REDOR NMR spectroscopy , 1994 .

[40]  A. Varshneya Fundamentals of Inorganic Glasses , 1993 .

[41]  P. Boolchand,et al.  Variation of glass transition temperature, Tg, with average coordination number, 〉m〈, in network glasses: evidence of a threshold behavior in the slope |dTg/d〉m〈 | at the rigidity percolation threshold (〉m〈 = 2.4) , 1992 .

[42]  T. Gullion,et al.  Determination of CN internuclear distances by rotational-echo double-resonance NMR of solids , 1990 .

[43]  Marvin J. Weber,et al.  Science and technology of laser glass , 1990 .

[44]  S. Risbud,et al.  MASS-NMR structural analysis of barium aluminofluorophosphate glasses with and without nitridation , 1990 .

[45]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[46]  R. Aleksić,et al.  Influence of Fluorine on Thermal Properties of Fluorophosphate Glasses , 1987 .

[47]  G. Exarhos,et al.  Vibrational spectroscopy of cation‐site interactions in phosphate glasses , 1979 .

[48]  F. L. Galeener,et al.  The Raman spectra and structure of pure vitreous P2O5 , 1979 .

[49]  John S. Waugh,et al.  NMR in rotating solids , 1979 .

[50]  R. Harris Fourier transform N.M.R. , 1974 .

[51]  U. Haeberlen,et al.  Coherent Averaging Effects in Magnetic Resonance , 1968 .

[52]  H. Carr,et al.  The Principles of Nuclear Magnetism , 1961 .

[53]  E. R. Andrew,et al.  Removal of Dipolar Broadening of Nuclear Magnetic Resonance Spectra of Solids by Specimen Rotation , 1959, Nature.

[54]  I. Lowe,et al.  Free Induction Decays of Rotating Solids , 1959 .

[55]  J. H. Van Vleck,et al.  The Dipolar Broadening of Magnetic Resonance Lines in Crystals , 1948 .

[56]  Otto Stern,et al.  Das magnetische Moment des Silberatoms , 1922 .

[57]  O. Stern Ein Weg zur experimentellen Prüfung der Richtungsquantelung im Magnetfeld , 1921 .

[58]  Ulrike Goldschmidt,et al.  Experimental Pulse Nmr A Nuts And Bolts Approach , 2016 .

[59]  W. Price,et al.  Spin dynamics: Basics of nuclear magnetic resonance, 2nd edition. , 2009 .

[60]  D. Ehrt,et al.  Structure and properties of mixed phosphate and fluoride glasses , 2005 .

[61]  O. Antzutkin,et al.  New Techniques in Solid-State NMR , 2005 .

[62]  Lori R Hilden,et al.  Physics of amorphous solids. , 2004, Journal of pharmaceutical sciences.

[63]  J. R. Martinelli,et al.  Formation of colloidal phosphorus particles in barium phosphate glasses , 2004 .

[64]  M. Levitt Spin Dynamics: Basics of Nuclear Magnetic Resonance , 2001 .

[65]  H. Eckert Structural characterization of noncrystalline solids and glasses using solid state NMR , 1992 .

[66]  T. Gullion,et al.  Rotational-Echo, Double-Resonance NMR , 1989 .

[67]  D. Shaw Fourier Transform N.M.R. Spectroscopy , 1976 .

[68]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .