Electrochemical Performance of Na4MnCr(PO4)3/C Cathode Affected by Different Transition Metal Dopants for Sodium Ion Batteries

[1]  Jianhua Gao,et al.  Na2VSn(PO4)3: A novel NASICON-type electrode material for symmetric sodium-ion batteries , 2023, Journal of Alloys and Compounds.

[2]  Yue Wang,et al.  Effects of scandium doping on the electrochemical performance of cathode materials Na3MnTi(PO4)3 for sodium-ion batteries , 2023, Colloids and Surfaces A: Physicochemical and Engineering Aspects.

[3]  Ligang Gai,et al.  Na+/K+-Codoped Amorphous Manganese Oxide with Enhanced Performance for Aqueous Sodium-Ion Battery , 2023, SSRN Electronic Journal.

[4]  Liang Zhou,et al.  A High-Energy NASICON-Type Na3.2MnTi0.8V0.2(PO4)3 Cathode Material with Reversible 3.2-Electron Redox Reaction for Sodium-Ion Batteries. , 2023, Angewandte Chemie.

[5]  Zhenyu Wang,et al.  Manganese Local Environment Modulation via SiO4 Substitution to Boost Sodium Storage Performance of Na4 MnCr(PO4 )3. , 2023, Small.

[6]  Jiabao Li,et al.  Boosted electrochemical performance of Na3V2(PO4)3 at low temperature through synergistical F substitution and construction of interconnected nitrogen-doped carbonaceous network , 2023, Journal of Materials Science & Technology.

[7]  L. Tian,et al.  Sustainable alternative cathodes of sodium-ion batteries using hybrid P2/O3 phase Na0.67Fe0.5Mn0.5−xMgxO2 , 2023, Journal of Alloys and Compounds.

[8]  Xing Wu,et al.  From Solid-Solution MXene to Cr-Substituted Na3V2(PO4)3: Breaking the Symmetry of Sodium Ions for High-Voltage and Ultrahigh-Rate Cathode Performance. , 2022, ACS nano.

[9]  Yongchang Liu,et al.  Stabilized Multi-Electron Reactions in a High-Energy Na4 Mn0.9 CrMg0.1 (PO4 )3 Sodium-Storage Cathode Enabled by the Pinning Effect. , 2022, Small.

[10]  Jiujun Zhang,et al.  Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries , 2022, Nature Communications.

[11]  Yanglong Hou,et al.  Unfolding the structural features of NASICON materials for sodium‐ion full cells , 2022, Carbon Energy.

[12]  Xianhua Hou,et al.  Prepare and optimize NASICON-type Na4MnAl(PO4)3 as low cost cathode for sodium ion batteries , 2022, Surfaces and Interfaces.

[13]  Jiazhao Wang,et al.  Ball Milling Solid-state Synthesis of Highly Crystalline Prussian Blue Analogue Na2-xMnFe(CN)6 Cathodes for All-climate Sodium-ion Batteries. , 2022, Angewandte Chemie.

[14]  Mingxue Tang,et al.  New-type NASICON-Na4FeV(PO4)3 cathode with high retention and durability for sodium ion batteries , 2022, Carbon.

[15]  Shuo Wang,et al.  Mechanisms of Ionic Diffusion and Stability of the Na4MnCr(PO4)3 Cathode , 2022, ACS Materials Letters.

[16]  S. Mitra,et al.  Enhanced electrochemical properties of W-doped Na3V2(PO4)2F3@C as cathode material in sodium ion batteries , 2022, Electrochimica Acta.

[17]  Ya‐Xia Yin,et al.  A Universal Strategy toward Air‐Stable and High‐Rate O3 Layered Oxide Cathodes for Na‐Ion Batteries , 2022, Advanced Functional Materials.

[18]  X. Qu,et al.  Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials , 2021, eScience.

[19]  Yunhui Huang,et al.  Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution , 2021 .

[20]  Jia-Na Lin,et al.  Metal-organic framework-derived LiFePO4 cathode encapsulated in O,F-codoped carbon matrix towards superior lithium storage , 2021, Nano Energy.

[21]  Ya‐Xia Yin,et al.  Boron-doped sodium layered oxide for reversible oxygen redox reaction in Na-ion battery cathodes , 2021, Nature Communications.

[22]  Joseph J. Richardson,et al.  Superstructured mesocrystals through multiple inherent molecular interactions for highly reversible sodium ion batteries , 2021, Science advances.

[23]  N. Klyui,et al.  Effects of low doping on the improvement of cathode materials Na3+xV2−xMx(PO4)3 (M = Co2+, Cu2+; x = 0.01–0.05) for SIBs , 2021, Journal of Materials Chemistry A.

[24]  J. Tirado,et al.  On the benefits of Cr substitution on Na4MnV(PO4)3 to improve the high voltage performance as cathode for sodium-ion batteries , 2021 .

[25]  Xingguo Qi,et al.  Rapid mechanochemical synthesis of polyanionic cathode with improved electrochemical performance for Na-ion batteries , 2021, Nature Communications.

[26]  P. Shen,et al.  Toward a High-Energy-Density Cathode with Enhanced Temperature Adaptability for Sodium-Ion Batteries: A Case Study of Na3MnZr(PO4)3 Microspheres with Embedded Dual-Carbon Networks. , 2021, ACS applied materials & interfaces.

[27]  A. Dolocan,et al.  Elevating Energy Density for Sodium-Ion Batteries through Multielectron Reactions. , 2021, Nano letters.

[28]  V. Mathew,et al.  C-Na3V1.96Fe0.04(PO4)3/Fe2P nanoclusters with stable charge-transfer interface for high-power sodium ion batteries , 2021 .

[29]  Chenglong Zhao,et al.  Rational design of layered oxide materials for sodium-ion batteries , 2020, Science.

[30]  I. Belharouak,et al.  Optimization of the compositions of polyanionic sodium-ion battery cathode NaFe2−xVx(PO4)(SO4)2 , 2020 .

[31]  Yurong Ren,et al.  Improved sodium storage properties of Zr-doped Na3V2(PO4)2F3/C as cathode material for sodium ion batteries , 2020 .

[32]  J. Xu,et al.  A Yolk-Shell Structured FePO4 Cathode for High-Rate and Long-Cycling Sodium-Ion Batteries. , 2020, Angewandte Chemie.

[33]  Yang‐Kook Sun,et al.  Multidimensional Na4VMn0.9Cu0.1(PO4)3/C cotton-candy cathode materials for high energy Na-ion batteries , 2020 .

[34]  Zhian Zhang,et al.  Full Activation of Mn4+ /Mn3+ Redox in Na4 MnCr(PO4 )3 as a High-Voltage and High-Rate Cathode Material for Sodium-Ion Batteries. , 2020, Small.

[35]  Xu Yang,et al.  Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. , 2020, Science bulletin.

[36]  Chenghao Yang,et al.  In-situ constructing Na3V2(PO4)2F3/carbon nanocubes for fast ion diffusion with high-performance Na+-storage , 2020 .

[37]  Zhian Zhang,et al.  Engineering of Polyanion Type Cathode Materials for Sodium‐Ion Batteries: Toward Higher Energy/Power Density , 2020, Advanced Functional Materials.

[38]  L. Mai,et al.  Dual carbon decorated Na3MnTi(PO4)3: A high-energy-density cathode material for sodium-ion batteries , 2020 .

[39]  Zhian Zhang,et al.  Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries , 2020 .

[40]  S. Dou,et al.  Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries , 2020, Nature Communications.

[41]  Lunhua He,et al.  A Novel NASICON‐Type Na4MnCr(PO4)3 Demonstrating the Energy Density Record of Phosphate Cathodes for Sodium‐Ion Batteries , 2020, Advanced materials.

[42]  G. Ceder,et al.  A High‐Energy NASICON‐Type Cathode Material for Na‐Ion Batteries , 2020, Advanced Energy Materials.

[43]  Li Xu,et al.  Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries , 2019, Energy Storage Materials.

[44]  Zhian Zhang,et al.  Engineering 3D Well-Interconnected Na4MnV(PO4)3 Facilitates Ultrafast and Ultrastable Sodium Storage. , 2019, ACS applied materials & interfaces.

[45]  Guozhao Fang,et al.  Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications , 2019, Nano Energy.

[46]  Chun-hua Chen,et al.  In situ catalytic formation of graphene-like graphitic layer decoration on Na3V2−xGax(PO4)3 (0 ≤ x ≤ 0.6) for ultrafast and high energy sodium storage , 2019, Journal of Materials Chemistry A.

[47]  L. Mai,et al.  Realizing Three‐Electron Redox Reactions in NASICON‐Structured Na3MnTi(PO4)3 for Sodium‐Ion Batteries , 2019, Advanced Energy Materials.

[48]  Graeme Henkelman,et al.  Na3MnZr(PO4)3: A High-Voltage Cathode for Sodium Batteries. , 2018, Journal of the American Chemical Society.

[49]  Yong Yang,et al.  Research Progress in Multielectron Reactions in Polyanionic Materials for Sodium‐Ion Batteries , 2018, Small Methods.

[50]  Vadim M. Kovrugin,et al.  A NASICON‐Type Positive Electrode for Na Batteries with High Energy Density: Na 4 MnV(PO 4 ) 3 , 2018, Small Methods.

[51]  Zhouguang Lu,et al.  Improvement in electrochemical performance of Na3V2(PO4)3/C cathode material for sodium-ion batteries by K-Ca co-doping , 2018, Electrochimica Acta.

[52]  Yan Yu,et al.  Highly Reversible Na Storage in Na3V2(PO4)3 by Optimizing Nanostructure and Rational Surface Engineering , 2018 .

[53]  Chen Wu,et al.  Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries , 2018 .

[54]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[55]  Zonghai Chen,et al.  Exploring Highly Reversible 1.5-Electron Reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 Cathode for Sodium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[56]  Wei Sun,et al.  The electrochemical exploration of double carbon-wrapped Na 3 V 2 (PO 4 ) 3 : Towards long-time cycling and superior rate sodium-ion battery cathode , 2017 .

[57]  Huamin Zhang,et al.  Y-Doped Na3V2(PO4)2F3 compounds for sodium ion battery cathodes: electrochemical performance and analysis of kinetic properties , 2017 .

[58]  Xiulei Ji,et al.  NASICON‐Structured Materials for Energy Storage , 2017, Advanced materials.

[59]  Bruce Dunn,et al.  Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. , 2017, Nature materials.

[60]  John B. Goodenough,et al.  Sodium Extraction from NASICON-Structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) Redox Couples , 2016 .

[61]  Yunhui Huang,et al.  Routes to High Energy Cathodes of Sodium‐Ion Batteries , 2016 .

[62]  Chao Wu,et al.  An Advanced Sodium‐Ion Battery Composed of Carbon Coated Na3V2(PO4)3 in a Porous Graphene Network , 2015, Advanced materials.

[63]  Docheon Ahn,et al.  Anomalous Jahn–Teller behavior in a manganese-based mixed-phosphate cathode for sodium ion batteries , 2015 .

[64]  Nan Chen,et al.  Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life , 2015 .

[65]  Xinping Ai,et al.  Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High‐Rate and Extended Lifespan Cathode for Sodium‐Ion Batteries , 2015, Advanced materials.

[66]  C. Masquelier,et al.  Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution , 2015 .

[67]  Tingfeng Yi,et al.  Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries , 2015 .

[68]  Hyuk-Sang Kwon,et al.  Structural enhancement of Na3V2(PO4)(3)/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries , 2014 .

[69]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[70]  D. K. Kim,et al.  Graphene-supported Na3V2(PO4)3 as a high rate cathode material for sodium-ion batteries , 2013 .

[71]  Reinhard Niessner,et al.  Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information , 2005 .

[72]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[73]  Z. L. Wang,et al.  Experimental and theoretical investigation of Na4MnAl(PO4)3 cathode material for sodium-ion batteries , 2021 .

[74]  Arumugam Manthiram,et al.  Progress in High‐Voltage Cathode Materials for Rechargeable Sodium‐Ion Batteries , 2018 .