Efficient and Modular Coalgebraic Partition Refinement

We present a generic partition refinement algorithm that quotients coalgebraic systems by behavioural equivalence, an important task in system analysis and verification. Coalgebraic generality allows us to cover not only classical relational systems but also, e.g. various forms of weighted systems and furthermore to flexibly combine existing system types. Under assumptions on the type functor that allow representing its finite coalgebras in terms of nodes and edges, our algorithm runs in time $\mathcal{O}(m\cdot \log n)$ where $n$ and $m$ are the numbers of nodes and edges, respectively. The generic complexity result and the possibility of combining system types yields a toolbox for efficient partition refinement algorithms. Instances of our generic algorithm match the run-time of the best known algorithms for unlabelled transition systems, Markov chains, deterministic automata (with fixed alphabets), Segala systems, and for color refinement.

[1]  Lijun Zhang,et al.  Flow Faster: Efficient Decision Algorithms for Probabilistic Simulations , 2007, Log. Methods Comput. Sci..

[2]  Jens Palsberg,et al.  Semantics and Algebraic Specification, Essays Dedicated to Peter D. Mosses on the Occasion of His 60th Birthday , 2009, Semantics and Algebraic Specification.

[3]  Andreas Maletti,et al.  Backward and forward bisimulation minimization of tree automata , 2009, Theor. Comput. Sci..

[4]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[5]  S. Lack,et al.  Introduction to extensive and distributive categories , 1993 .

[6]  Ron van der Meyden,et al.  Algorithmic Verification of Noninterference Properties , 2007, VODCA@FOSAD.

[7]  Y VardiMoshe,et al.  Bisimulation Minimization and Symbolic Model Checking , 2002 .

[8]  Timo Knuutila,et al.  Re-describing an algorithm by Hopcroft , 2001, Theor. Comput. Sci..

[9]  Christel Baier,et al.  Deciding Bisimilarity and Similarity for Probabilistic Processes , 2000, J. Comput. Syst. Sci..

[10]  Francesco Ranzato,et al.  Generalizing the Paige-Tarjan algorithm by abstract interpretation , 2008, Inf. Comput..

[11]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[12]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[13]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[14]  Neil Immerman,et al.  An optimal lower bound on the number of variables for graph identification , 1992, Comb..

[15]  Abbas Edalat,et al.  Bisimulation for Labelled Markov Processes , 2002, Inf. Comput..

[16]  Paul S. Bonsma,et al.  Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement , 2016, Theory of Computing Systems.

[17]  Roberto Segala,et al.  Decision Algorithms for Probabilistic Bisimulation , 2002, CONCUR.

[18]  Hans A. Hansson Time and probability in formal design of distributed systems , 1991, DoCS.

[19]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[20]  Barbara König,et al.  Generic Partition Refinement Algorithms for Coalgebras and an Instantiation to Weighted Automata , 2014, IFIP TCS.

[21]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[22]  Stefan Milius,et al.  Efficient Coalgebraic Partition Refinement , 2017, CONCUR.

[23]  Erik P. de Vink,et al.  An Efficient Algorithm to Determine Probabilistic Bisimulation , 2018, Algorithms.

[24]  John E. Hopcroft,et al.  An n log n algorithm for minimizing states in a finite automaton , 1971 .

[25]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[26]  Alexandra Silva,et al.  A Coalgebraic Perspective on Minimization and Determinization , 2012, FoSSaCS.

[27]  Peter Aczel,et al.  A Final Coalgebra Theorem , 1989, Category Theory and Computer Science.

[28]  William H. Sanders,et al.  Optimal state-space lumping in Markov chains , 2003, Inf. Process. Lett..

[29]  Stefan Milius,et al.  Generic Partition Refinement and Weighted Tree Automata , 2018, FM.

[30]  Lu Tian,et al.  On some equivalence relations for probabilistic processes , 1992, Fundamenta Informaticae.

[31]  Andreas Maletti,et al.  Bisimulation Minimisation for Weighted Tree Automata , 2007, Developments in Language Theory.

[32]  James Worrell,et al.  On the final sequence of a finitary set functor , 2005, Theor. Comput. Sci..

[33]  Giuliana Franceschinis,et al.  Simple O(m logn) Time Markov Chain Lumping , 2010, TACAS.

[34]  Dirk Pattinson,et al.  Modular algorithms for heterogeneous modal logics via multi-sorted coalgebra , 2011, Mathematical Structures in Computer Science.

[35]  Peter Buchholz,et al.  Bisimulation relations for weighted automata , 2008, Theor. Comput. Sci..

[36]  Bartek Klin,et al.  Structural Operational Semantics for Weighted Transition Systems , 2009, Semantics and Algebraic Specification.

[37]  Kathi Fisler,et al.  Bisimulation Minimization and Symbolic Model Checking , 2002, Formal Methods Syst. Des..

[38]  David Gries,et al.  Describing an algorithm by Hopcroft , 1973, Acta Informatica.

[39]  Jan Friso Groote,et al.  An O(mlogn) Algorithm for Computing Stuttering Equivalence and Branching Bisimulation , 2017, ACM Trans. Comput. Log..

[40]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[41]  Stefan Milius,et al.  A New Foundation for Finitary Corecursion and Iterative Algebras , 2018, Inf. Comput..

[42]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[43]  Roland Carl Backhouse,et al.  Program construction and verification , 1986, PHI Series in computer science.

[44]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[45]  Agostino Dovier,et al.  An efficient algorithm for computing bisimulation equivalence , 2004, Theor. Comput. Sci..

[46]  Erik P. de Vink,et al.  A hierarchy of probabilistic system types , 2003, CMCS.

[47]  Joost-Pieter Katoen,et al.  Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking , 2007, TACAS.

[48]  Simona Orzan,et al.  A distributed algorithm for strong bisimulation reduction of state spaces , 2004, International Journal on Software Tools for Technology Transfer.

[49]  Abbas Edalat,et al.  Bisimulation for labelled Markov processes , 1997, Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science.

[50]  Antti Valmari Bisimilarity Minimization in O(m logn) Time , 2009, Petri Nets.

[51]  Horst Herrlich,et al.  Abstract and concrete categories , 1990 .