Distribution-free consistent independence tests via Hallin's multivariate rank
暂无分享,去创建一个
M. Drton | Fang Han | H. Shi | Hongjian Shi
[1] H. Hirschfeld. A Connection between Correlation and Contingency , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] H. Gebelein. Das statistische Problem der Korrelation als Variations‐ und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung , 1941 .
[3] J. Wolfowitz,et al. Statistical Tests Based on Permutations of the Observations , 1944 .
[4] H. Wool. THE RELATION BETWEEN MEASURES OF CORRELATION IN THE UNIVERSE OF SAMPLE PERMUTATIONS , 1944 .
[5] W. Hoeffding. A Non-Parametric Test of Independence , 1948 .
[6] W. Hoeffding. A Combinatorial Central Limit Theorem , 1951 .
[7] H. W. Kuhn B R Y N Mawr College. Variants of the Hungarian Method for Assignment Problems' , 1955 .
[8] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[9] On the Hoeffding’s combinatrial central limit theorem , 1956 .
[10] J. Munkres. ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .
[11] A. Rényi. New version of the probabilistic generalization of the large sieve , 1959 .
[12] A. Rényi. On measures of dependence , 1959 .
[13] L. Blumenson. A Derivation of n-Dimensional Spherical Coordinates , 1960 .
[14] J. Kiefer,et al. DISTRIBUTION FREE TESTS OF INDEPENDENCE BASED ON THE SAMPLE DISTRIBUTION FUNCTION , 1961 .
[15] J. Hájek. Some Extensions of the Wald-Wolfowitz-Noether Theorem , 1961 .
[16] W. Rudin. Principles of mathematical analysis , 1964 .
[17] K. Atkinson. THE NUMERICAL SOLUTION OF THE EIGENVALUE PROBLEM FOR COMPACT INTEGRAL OPERATORS , 2008 .
[18] K. Jogdeo. Asymptotic Normality in Nonparametric Methods , 1968 .
[19] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[20] O. Abe. A Central Limit Theorem for the Number of Edges in the Random Intersection of Two Graphs , 1969 .
[21] T. Yanagimoto. On measures of association and a related problem , 1970 .
[22] P. Anselone,et al. Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .
[23] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[24] A. R. Bloemena. Sampling from a graph , 1976 .
[25] R. Milner. Mathematical Centre Tracts , 1976 .
[26] M. Degroot,et al. Probability and Statistics , 1977 .
[27] W. Beyer. CRC Handbook of Mathematical Sciences , 1978 .
[28] L. Hubert,et al. Asymptotic Normality of Permutation Statistics Derived from Weighted Sums of Bivariate Functions , 1979 .
[29] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[30] R. Serfling. Approximation Theorems of Mathematical Statistics , 1980 .
[31] E. Bolthausen. An estimate of the remainder in a combinatorial central limit theorem , 1984 .
[32] R. Farebrother. The Distribution of a Positive Linear Combination of X2 Random Variables , 1984 .
[33] A. Pietsch. Eigenvalue distribution of compact operators , 1986 .
[34] A. Barbour,et al. Random association of symmetric arrays , 1986 .
[35] H. König. Eigenvalue Distribution of Compact Operators , 1986 .
[36] W. Rudin. Real and complex analysis, 3rd ed. , 1987 .
[37] S. Kotz,et al. Symmetric Multivariate and Related Distributions , 1989 .
[38] Robert E. Tarjan,et al. Faster Scaling Algorithms for Network Problems , 1989, SIAM J. Comput..
[39] D. Pham,et al. Asymptotic normality of double-indexed linear permutation statistics , 1989 .
[40] A. Feuerverger,et al. A Consistent Test for Bivariate Dependence , 1993 .
[41] F. Götze,et al. The Rate of Convergence for Multivariate Sampling Statistics , 1993 .
[42] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[43] Z. Bai,et al. Error bound in a central limit theorem of double-indexed permutation statistics , 1997 .
[44] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[45] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[46] D. Paindaveine,et al. Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks , 2002 .
[47] D. Paindaveine,et al. Multivariate signed ranks: Randles' interdirections or Tyler's angles? , 2002 .
[48] G. Székely,et al. Extremal probabilities for Gaussian quadratic forms , 2003 .
[49] A. Kraskov,et al. Estimating mutual information. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[50] Louis H. Y. Chen,et al. The permutation distribution of matrix correlation statistics , 2005 .
[51] J. P. BfflOF. Computing the distribution of quadratic forms in normal variables , 2005 .
[52] Bernhard Schölkopf,et al. Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.
[53] Bernhard Schölkopf,et al. Kernel Methods for Measuring Independence , 2005, J. Mach. Learn. Res..
[54] Bernhard Schölkopf,et al. Kernel Constrained Covariance for Dependence Measurement , 2005, AISTATS.
[55] J. Escanciano. A CONSISTENT DIAGNOSTIC TEST FOR REGRESSION MODELS USING PROJECTIONS , 2006, Econometric Theory.
[56] Maria L. Rizzo,et al. A multivariate nonparametric test of independence , 2006 .
[57] Le Song,et al. A Kernel Statistical Test of Independence , 2007, NIPS.
[58] Maria L. Rizzo,et al. Measuring and testing dependence by correlation of distances , 2007, 0803.4101.
[59] C. Villani. Optimal Transport: Old and New , 2008 .
[60] Maria L. Rizzo,et al. Brownian distance covariance , 2009, 1010.0297.
[61] G. Reinert,et al. Multivariate normal approximation with Stein’s method of exchangeable pairs under a general linearity condition , 2007, 0711.1082.
[62] Bruno R'emillard. DISCUSSION OF: BROWNIAN DISTANCE COVARIANCE , 2009, 1010.0838.
[63] Wicher P. Bergsma,et al. A consistent test of independence based on a sign covariance related to Kendall's tau , 2010, 1007.4259.
[64] Michael Mitzenmacher,et al. Detecting Novel Associations in Large Data Sets , 2011, Science.
[65] Pankaj K. Agarwal,et al. Algorithms for the transportation problem in geometric settings , 2012, SODA.
[66] R. Heller,et al. A class of multivariate distribution-free tests of independence based on graphs. , 2012, Journal of statistical planning and inference.
[67] Kenji Fukumizu,et al. Equivalence of distance-based and RKHS-based statistics in hypothesis testing , 2012, ArXiv.
[68] R. Heller,et al. A consistent multivariate test of association based on ranks of distances , 2012, 1201.3522.
[69] Gábor J. Székely,et al. The distance correlation t-test of independence in high dimension , 2013, J. Multivar. Anal..
[70] R. Lyons. Distance covariance in metric spaces , 2011, 1106.5758.
[71] V. Chernozhukov,et al. Monge-Kantorovich Depth, Quantiles, Ranks and Signs , 2014, 1412.8434.
[72] Pankaj K. Agarwal,et al. Approximation algorithms for bipartite matching with metric and geometric costs , 2014, STOC.
[73] J. Kinney,et al. Equitability, mutual information, and the maximal information coefficient , 2013, Proceedings of the National Academy of Sciences.
[74] Real Analysis: A Comprehensive Course in Analysis, Part 1 , 2015 .
[75] B. Simon. Operator Theory: A Comprehensive Course in Analysis, Part 4 , 2015 .
[76] Michael Mitzenmacher,et al. Measuring Dependence Powerfully and Equitably , 2015, J. Mach. Learn. Res..
[77] Ursula Faber,et al. Theory Of U Statistics , 2016 .
[78] Malka Gorfine,et al. Consistent Distribution-Free $K$-Sample and Independence Tests for Univariate Random Variables , 2014, J. Mach. Learn. Res..
[79] Luca Weihs,et al. Large-Sample Theory for the Bergsma-Dassios Sign Covariance , 2016, 1602.04387.
[80] X. Shao,et al. Testing mutual independence in high dimension via distance covariance , 2016, 1609.09380.
[81] Xiaoming Huo,et al. Fast Computing for Distance Covariance , 2014, Technometrics.
[82] M. E. Jakobsen. Distance Covariance in Metric Spaces: Non-Parametric Independence Testing in Metric Spaces (Master's thesis) , 2017, 1706.03490.
[83] Runze Li,et al. Projection correlation between two random vectors , 2017, Biometrika.
[84] M. Hallin. On Distribution and Quantile Functions, Ranks and Signs in R_d , 2017 .
[85] J. A. Cuesta-Albertos,et al. Smooth Cyclically Monotone Interpolation and Empirical Center-Outward Distribution Functions , 2018 .
[86] N. Meinshausen,et al. Symmetric rank covariances: a generalized framework for nonparametric measures of dependence , 2017, Biometrika.
[87] L. Wasserman,et al. Robust Multivariate Nonparametric Tests via Projection-Pursuit , 2018, 1803.00715.
[88] A. Figalli. On the continuity of center-outward distribution and quantile functions , 2018, Nonlinear Analysis.
[89] Li Ma,et al. Fisher Exact Scanning for Dependency , 2016, Journal of the American Statistical Association.
[90] David N. Reshef,et al. An empirical study of the maximal and total information coefficients and leading measures of dependence , 2018 .
[91] R. Lyons. Errata to “Distance covariance in metric spaces” , 2018, The Annals of Probability.
[92] E. Barrio,et al. Smooth Cyclically Monotone Interpolation and Empirical Center-Outward Distribution Functions , 2018 .
[93] B. Sen,et al. Multivariate Ranks and Quantiles using Optimal Transportation and Applications to Goodness-of-fit Testing , 2019 .
[94] Thomas B. Berrett,et al. Nonparametric independence testing via mutual information , 2017, Biometrika.
[95] Kai Zhang,et al. BET on Independence , 2016, Journal of the American Statistical Association.
[96] Heping Zhang,et al. Ball Covariance: A Generic Measure of Dependence in Banach Space , 2019, Journal of the American Statistical Association.
[97] Bodhisattva Sen,et al. Multivariate Rank-Based Distribution-Free Nonparametric Testing Using Measure Transportation , 2019, Journal of the American Statistical Association.