On the solution of large-scale SDP problems by the modified barrier method using iterative solvers

The limiting factors of second-order methods for large-scale semidefinite optimization are the storage and factorization of the Newton matrix. For a particular algorithm based on the modified barrier method, we propose to use iterative solvers instead of the routinely used direct factorization techniques. The preconditioned conjugate gradient method proves to be a viable alternative for problems with a large number of variables and modest size of the constrained matrix. We further propose to avoid explicit calculation of the Newton matrix either by an implicit scheme in the matrix–vector product or using a finite-difference formula. This leads to huge savings in memory requirements and, for certain problems, to further speed-up of the algorithm.

[1]  Kim-Chuan Toh,et al.  Solving Large Scale Semidefinite Programs via an Iterative Solver on the Augmented Systems , 2003, SIAM J. Optim..

[2]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[3]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[4]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[5]  Yinyu Ye,et al.  Solving Sparse Semidefinite Programs Using the Dual Scaling Algorithm with an Iterative Solver , 2000 .

[6]  Masakazu Kojima,et al.  Incomplete orthogonalization preconditioners for solving large and dense linear systems which arise from semidefinite programming , 2002 .

[7]  R. Saigal,et al.  An Incomplete Cholesky Factorization for Dense Symmetric Positive Definite Matrices , 2000 .

[8]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[9]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[10]  Franz Rendl,et al.  A Boundary Point Method to Solve Semidefinite Programs , 2006, Computing.

[11]  Michael Stingl,et al.  Solving nonconvex SDP problems of structural optimization with stability control , 2004, Optim. Methods Softw..

[12]  D. Henrion,et al.  A NONLINEAR SDP ALGORITHM FOR STATIC OUTPUT FEEDBACK PROBLEMS IN COMPleib , 2005 .

[13]  C. Geiger,et al.  Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben , 1999 .

[14]  Kim-Chuan Toh,et al.  Solving Some Large Scale Semidefinite Programs via the Conjugate Residual Method , 2002, SIAM J. Optim..

[15]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[16]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[17]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[18]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[19]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[20]  Jorge J. Moré,et al.  Benchmarking optimization software with performance profiles , 2001, Math. Program..

[21]  Brian Borchers,et al.  A library of semidefinite programming test problems , 1999 .

[22]  Masakazu Kojima,et al.  Lagrangian Dual Interior-Point Methods for Semidefinite Programs , 2002, SIAM J. Optim..

[23]  Jorge Nocedal,et al.  Automatic Preconditioning by Limited Memory Quasi-Newton Updating , 1999, SIAM J. Optim..

[24]  Roman A. Polyak,et al.  Modified barrier functions (theory and methods) , 1992, Math. Program..