Complexation-induced translational isomerism: shuttling through stepwise competitive binding.

[1]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[2]  M. Jiménez,et al.  Towards Synthetic Molecular Muscles: Contraction and Stretching of a Linear Rotaxane Dimer , 2000 .

[3]  Jean-Pierre Sauvage,et al.  Redox Control of the Ring-Gliding Motion in a Cu-Complexed Catenane: A Process Involving Three Distinct Geometries , 1996 .

[4]  Hsian-Rong Tseng,et al.  Switchable neutral bistable rotaxanes. , 2004, Journal of the American Chemical Society.

[5]  J Fraser Stoddart,et al.  Counterion-induced translational isomerism in a bistable [2]rotaxane. , 2004, Organic letters.

[6]  A. Rheingold,et al.  Bimetallic reactivity. One-site addition two-metal oxidation reaction of dioxygen with a bimetallic dicobalt(II) complex bearing five- and six-coordinate sites. , 2002, Journal of the American Chemical Society.

[7]  J. Fraser Stoddart,et al.  Ein Prototyp eines optisch reagierenden molekularen Schalters auf Pseudorotaxan‐Basis , 1996 .

[8]  David J. Williams,et al.  Einfache molekulare Maschinen: chemisch gesteuertes Ausfädeln und Rückeinfädeln eines [2]Pseudorotaxans , 1996 .

[9]  Y. Nishida,et al.  Oxidation of cyclohexane with hydrogen peroxide catalysed by copper(II) complexes containing N,N-bis(2-pyridylmethyl)-β-alanineamide ligands , 1997 .

[10]  Stuart R Batten,et al.  Interpenetrating Nets: Ordered, Periodic Entanglement. , 1998, Angewandte Chemie.

[11]  Vincenzo Balzani,et al.  Electrochemically and Photochemically Driven Ring Motions in a Disymmetrical Copper [2]-Catenate. , 1997, Journal of the American Chemical Society.

[12]  O. Walter,et al.  Can aromatic interactions control the coordination geometry of zinc complexes? Structural evidence and a possible mechanism for the conversion of trigonal-bipyramidal to octahedral compounds , 2002 .

[13]  T. Tokii,et al.  Chemical origin of high activity in oxygenation of cyclohexane by H2O2 catalysed by dinuclear iron(III) complexes with amide-containing ligands , 1996 .

[14]  M. Asakawa,et al.  Threading-followed-by-shrinking protocol for the synthesis of a [2]rotaxane incorporating a Pd(II)-salophen moiety. , 2004, Journal of the American Chemical Society.

[15]  M. Gautam-Basak,et al.  The saga of copper(II)–l-histidine , 2005 .

[16]  H. Anderson,et al.  Synthesis of poly(para-phenylenevinylene) rotaxanes by aqueous Suzuki coupling. , 2004, Chemical communications.

[17]  T. Takata,et al.  Dynamic Covalent Chemistry in Rotaxane Synthesis. Slipping Approach to [2] Rotaxane Utilizing Reversible Cleavage-Rebondage of Trityl Thioether Linkage , 2004 .

[18]  David A Leigh,et al.  Controlled submolecular translational motion in synthesis: a mechanically interlocking auxiliary. , 2004, Angewandte Chemie.

[19]  Y. Nagawa,et al.  Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion. , 2004, Journal of the American Chemical Society.

[20]  Jean-Pierre Sauvage,et al.  Towards artificial muscles at the nanometric level. , 2003, Chemical communications.

[21]  K. Peters,et al.  How Strong and How Hindered Can Uncharged Phosphazene Bases Be , 1993 .

[22]  O. Walter,et al.  Chiral Quadridentate Ligands Derived from Amino Acids and Some Zinc Complexes Thereof , 2000 .

[23]  M. Gunter,et al.  Amide-appended porphyrins as scaffolds for catenanes, rotaxanes and anion receptors , 2004 .

[24]  A. Powell,et al.  Ni(II), Cu(II) and Zn(II) complexes of a bifunctional bis(picolyl)amine (bpa) ligand derived from glycine , 2001 .

[25]  Vincenzo Balzani,et al.  Molecular Devices and Machines– A Journey into the Nano World , 2003 .

[26]  J. Fraser Stoddart,et al.  A Molecular Elevator , 2004, Science.

[27]  M. Jennings,et al.  Gold(I) macrocycles and topologically chiral [2]catenanes. , 2002, Journal of the American Chemical Society.

[28]  P. Ballester,et al.  Self-assembly of [2]rotaxane exploiting reversible Pt(II)- pyridine coordinate bonds. , 2004, Molecules.

[29]  Alan Saghatelian,et al.  DNA detection and signal amplification via an engineered allosteric enzyme. , 2003, Journal of the American Chemical Society.

[30]  Wallace W. H. Wong,et al.  Heteropolymetallic copper(II)-gold(III) dithiocarbamate [2]catenanes via magic ring synthesis. , 2005, Chemical communications.

[31]  James A. Wisner,et al.  [2]Rotaxanes containing pyridinium-phosphonium axles and 24-crown-8 ether wheels. , 2004, Organic & biomolecular chemistry.

[32]  H. Schnering,et al.  Wie stark und wie gehindert können ungeladene Phosphazenbasen sein , 1993 .

[33]  F. Hampel,et al.  The reactivity of N-coordinated amides in metallopeptide frameworks: molecular events in metal-induced pathogenic pathways? , 2001, Chemistry.

[34]  Kyoung-Jin Chang,et al.  Reversible control of assembly and disassembly of interlocked supermolecules. , 2004, The Journal of organic chemistry.

[35]  J. Sanders,et al.  Reversible five-component assembly of a [2]catenane from a chiral metallomacrocycle and a dinaphtho-crown ether , 1998 .

[36]  Jean-Pierre Sauvage,et al.  A copper-complexed rotaxane in motion: pirouetting of the ring on the millisecond timescale. , 2004, Chemical communications.

[37]  C. Incarvito,et al.  Bimetallic reactivity. One-site addition two-metal oxidation reactions using a di-Co(II) complex of a binucleating ligand with 5- and 6-coordinate sites. , 2001, Inorganic chemistry.

[38]  J. Fraser Stoddart,et al.  Prototype of an Optically Responsive Molecular Switch Based on Pseudorotaxane , 1996 .

[39]  David J. Williams,et al.  Simple Molecular Machines: Chemically Driven Unthreading and Rethreading of a [2]Pseudorotaxane , 1996 .

[40]  P. Beer,et al.  Self-Assembly of a Mixed-Valence Copper(II)/Copper(III) Dithiocarbamate Catenane. , 2001, Angewandte Chemie.

[41]  William A. Goddard,et al.  Meccano on the Nanoscale—A Blueprint for Making Some of the World's Tiniest Machines , 2004 .

[42]  O. Walter,et al.  Synthesis, Structures, and Redox Properties of Copper Complexes with Chiral and Achiral Amino Acid Derived Ligands , 2002 .

[43]  C. Hunter,et al.  Quantifying intermolecular interactions: guidelines for the molecular recognition toolbox. , 2004, Angewandte Chemie.

[44]  Jean-Pierre Sauvage,et al.  Transition metal-complexed catenanes and rotaxanes as molecular machine prototypes. , 2005, Chemical communications.

[45]  S. J. Loeb,et al.  Metal-organic rotaxane frameworks; MORFs. , 2005, Chemical communications.

[46]  Jean-Pierre Sauvage,et al.  Molecular catenanes, rotaxanes and knots : A journey through the world of molecular topology , 1999 .

[47]  Pablo Gaviña,et al.  Rotaxanes Incorporating Two Different Coordinating Units in Their Thread: Synthesis and Electrochemically and Photochemically Induced Molecular Motions , 1999 .

[48]  S. J. Loeb,et al.  Metal-organic rotaxane frameworks: three-dimensional polyrotaxanes from lanthanide-ion nodes, pyridinium N-oxide axles, and crown-ether wheels. , 2005, Angewandte Chemie.

[49]  M. Blanco,et al.  Transition‐Metal‐Templated Synthesis of Rotaxanes , 2003 .

[50]  W. Mattice,et al.  Synthesis and Mass Spectrometry Studies of an Amphiphilic Polyether-Based Rotaxane That Lacks an Enthalpic Driving Force for Threading , 2005 .

[51]  Alexander J. Blake,et al.  Inorganic crystal engineering using self-assembly of tailored building-blocks , 1999 .

[52]  David A Leigh,et al.  A simple general ligand system for assembling octahedral metal-rotaxane complexes. , 2004, Angewandte Chemie.

[53]  Toshio Suzuki,et al.  DNA degradation by the copper(II) complex with tripodal-ligands containing peptide group , 1998 .

[54]  Helmut Sigel,et al.  Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands , 1982 .

[55]  A. Orita,et al.  Rate acceleration of the reaction between solid reactants by premixing in solution: application to the efficient synthesis of a [2]rotaxane. , 2004, Angewandte Chemie.

[56]  David A Leigh,et al.  Shuttling through reversible covalent chemistry. , 2004, Chemical communications.

[57]  Kimoon Kim Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. , 2002, Chemical Society reviews.

[58]  M. Jennings,et al.  [2]Pseudorotaxanes through second-sphere coordination. , 2005, Angewandte Chemie.

[59]  David A Leigh,et al.  Benzylic Imine Catenates: Readily Accessible Octahedral Analogues of the Sauvage Catenates. , 2001, Angewandte Chemie.

[60]  Jean-Pierre Sauvage,et al.  Chemically induced contraction and stretching of a linear rotaxane dimer. , 2002, Chemistry.

[61]  David A. Leigh,et al.  Synthetic Molecular Machines , 2005 .

[62]  C. Dietrich-Buchecker,et al.  Shuttles and muscles: linear molecular machines based on transition metals. , 2001, Accounts of chemical research.

[63]  T. Takata,et al.  End-cap exchange of rotaxane by the Tsuji-Trost allylation reaction. , 2005, Organic letters.

[64]  U. Grummt,et al.  A photoswitchable rotaxane with a folded molecular thread. , 2004, Chemistry.

[65]  I. V. van Stokkum,et al.  Enhanced hydrogen bonding induced by optical excitation: unexpected subnanosecond photoinduced dynamics in a peptide-based [2]rotaxane. , 2001, Journal of the American Chemical Society.

[66]  J. Steinke,et al.  Catalytic Self-Threading: A New Route for the Synthesis of Polyrotaxanes , 2004 .

[67]  T. Takata,et al.  Synthesis of novel interlocked systems utilizing a palladium complex with 2,6-pyridinedicarboxamide-based tridentate macrocyclic ligand , 2004 .

[68]  J. Sauvage,et al.  ELECTROCHEMICALLY INDUCED MOLECULAR MOTIONS IN COPPER-COMPLEXED THREADED SYSTEMS : FROM THE UNSTOPPERED COMPOUND TO THE SEMI-ROTAXANE AND THE FULLY BL OCKED ROTAXANE , 1997 .

[69]  H. Yamaguchi,et al.  A [2]rotaxane capped by a cyclodextrin and a guest: formation of supramolecular [2]rotaxane polymer. , 2005, Journal of the American Chemical Society.

[70]  Jean-Pierre Sauvage,et al.  Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. , 2004, Angewandte Chemie.

[71]  K. Liao,et al.  Mild and high-yielding syntheses of diethyl phosphoramidate-stoppered [2]rotaxanes. , 2004, Organic letters.

[72]  David A Leigh,et al.  Rare and diverse binding modes introduced through mechanical bonding. , 2005, Angewandte Chemie.

[73]  Shanger Wang,et al.  Demetalation of the regioselective oxygenation product of an N-confused porphyrin complex. , 2004, Organic letters.

[74]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.

[75]  D. H. Busch,et al.  Template routes to interlocked molecular structures and orderly molecular entanglements , 2000 .

[76]  R. Robson,et al.  Einander durchdringende Netze: geordnete, periodische Verschlingung , 1998 .

[77]  Francesco Zerbetto,et al.  Remarkable positional discrimination in bistable light- and heat-switchable hydrogen-bonded molecular shuttles. , 2003, Angewandte Chemie.

[78]  M. Fujita,et al.  Self-Assembly of [2]Catenanes Containing Metals in Their Backbones , 1999 .

[79]  Laurence Raehm,et al.  A Transition Metal Containing Rotaxane in Motion: Electrochemically Induced Pirouetting of the Ring on the Threaded Dumbbell , 1999 .

[80]  J Fraser Stoddart,et al.  Nanoscale borromean rings. , 2005, Accounts of chemical research.

[81]  S. Benkovic,et al.  Catecholate LMCT bands as probes for the active sites of nonheme iron oxygenases , 1988 .

[82]  Christopher A. Hunter Zwischenmolekulare Wechselwirkungen in Lösung: eine vereinfachende Quantifizierungsmethode , 2004 .

[83]  J. Fraser Stoddart,et al.  Simple molecular-level machines. Interchange between different threads in pseudorotaxanes , 1998 .

[84]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[85]  E. Anslyn,et al.  A competition assay for determining glucose-6-phosphate concentration with a tris-boronic acid receptor , 1999 .

[86]  T. Swager,et al.  Intramolecular photoinduced charge transfer in rotaxanes. , 2005, Journal of the American Chemical Society.

[87]  Nobuhiro Kihara,et al.  Redox behavior of ferrocene-containing rotaxane: transposition of the rotaxane wheel by redox reaction of a ferrocene moiety tethered at the end of the axle. , 2004, Organic letters.