Metal-insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals

Phase transitions exhibited by correlated oxides could be of potential relevance to the emerging field of oxide electronics. We report on the synthesis of high-quality VO2 thin films grown on single crystal Ge(100) substrates by physical vapor deposition and their metal-insulator transition (MIT) properties. Thermally triggered MIT is demonstrated with nearly three orders of magnitude resistance change across the MIT with transition temperatures of 67 °C (heating) and 61 °C (cooling). Voltage-triggered hysteretic MIT is observed at room temperature at threshold voltage of ∼2.1 V for ∼100 nm thickness VO2 films. Activation energies for electron transport in the insulating and conducting states are obtained from variable temperature resistance measurements. We further compare the properties of VO2 thin films grown under identical conditions on Si(100) single crystals. The VO2 thin films grown on Ge substrate show higher degree of crystallinity, slightly reduced compressive strain, larger resistance change a...

[1]  Alexander Pergament,et al.  The effect of electric field on metal-insulator phase transition in vanadium dioxide , 2002 .

[2]  G. Sawatzky,et al.  X-ray photoelectron and Auger spectroscopy study of some vanadium oxides , 1979 .

[3]  A. Bhattacharya,et al.  X-ray photoelectron spectroscopy and spectral transmittance study of stoichiometry in sputtered vanadium oxide films , 1998 .

[4]  J. A. Misewich,et al.  A field effect transistor based on the Mott transition in a molecular layer , 1996 .

[5]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[6]  A. Cavalleri,et al.  Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition. , 2001, Physical review letters.

[7]  Shriram Ramanathan,et al.  Observation of electric field-assisted phase transition in thin film vanadium oxide in a metal-oxide-semiconductor device geometry , 2008 .

[8]  S. Ramanathan,et al.  Nanoscale imaging and control of resistance switching in VO2 at room temperature , 2010 .

[9]  Shriram Ramanathan,et al.  Structure-functional property relationships in rf-sputtered vanadium dioxide thin films , 2007 .

[10]  Y. Barbaux,et al.  XPS studies of V2O5, V6O13, VO2 and V2O3 , 1995 .

[11]  D. Youn,et al.  Phase and structural characterization of vanadium oxide films grown on amorphous SiO2/Si substrates , 2004 .

[12]  Stuart A. Wolf,et al.  Very large anisotropy in the dc conductivity of epitaxial VO2 thin films grown on (011) rutile TiO2 substrates , 2008 .

[13]  S. Ramanathan,et al.  Dispersive capacitance and conductance across the phase transition boundary in metal-vanadium oxide-silicon devices , 2009 .

[14]  John B. Goodenough,et al.  The two components of the crystallographic transition in VO2 , 1971 .

[15]  M. Ieong,et al.  Silicon Device Scaling to the Sub-10-nm Regime , 2004, Science.

[16]  W. Kaiser,et al.  Infrared Absorption and Oxygen Content in Silicon and Germanium , 1956 .

[17]  Mikk Lippmaa,et al.  Characterizing a strain-driven phase transition in VO2 , 2010 .

[18]  Z. Bastl,et al.  XPS study of vanadium surface oxidation by oxygen ion bombardment , 2006 .

[19]  Alexander Pergament,et al.  Electrical switching and Mott transition in VO2 , 2000 .

[20]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[21]  Gokul Gopalakrishnan,et al.  Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions , 2009 .

[22]  S. Ramanathan,et al.  Observation of a uniform temperature dependence in the electrical resistance across the structural phase transition in thin film vanadium oxide (VO2) , 2007, 0707.0885.

[23]  Honghui Zhou,et al.  Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates , 2010 .

[24]  Sylvain Fourmaux,et al.  Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO2 thin films , 2005 .

[25]  Ivan K Schuller,et al.  Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions. , 2008, Physical review letters.

[26]  F. Keilmann,et al.  Inhomogeneous electronic state near the insulator-to-metal transition in the correlated oxide VO2 , 2009 .

[27]  W. Reichelt,et al.  Mixed-valence vanadium oxides studied by XPS , 2000 .

[28]  M. Lee,et al.  Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors , 2005 .

[29]  Gyungock Kim,et al.  Mechanism and observation of Mott transition in VO2-based two- and three-terminal devices , 2004 .

[30]  L. Terman An investigation of surface states at a silicon/silicon oxide interface employing metal-oxide-silicon diodes , 1962 .

[31]  I. K. Kristensen Seebeck coefficient and electrical conductivity in the system TiO2VO2 , 1974 .

[32]  A. L. Patterson The Scherrer Formula for X-Ray Particle Size Determination , 1939 .

[33]  S. A. Shivashankar,et al.  Microstructure and properties of VO2 thin films deposited by MOCVD from vanadyl acetylacetonate , 2002 .

[34]  S. Ramanathan,et al.  In situ x-ray diffraction studies on epitaxial VO2 films grown on c-Al2O3 during thermally induced insulator-metal transition , 2010 .

[35]  Jinhua Li,et al.  Temperature sensitivity of resistance of VO2 polycrystalline films formed by modified ion beam enhanced deposition , 2004 .

[36]  Gokul Gopalakrishnan,et al.  Three-terminal field effect devices utilizing thin film vanadium oxide as the channel layer , 2010, 1006.4373.

[37]  Byung-Gyu Chae,et al.  Abrupt metal–insulator transition observed in VO2 thin films induced by a switching voltage pulse , 2005 .

[38]  Sahand Hormoz,et al.  Limits on vanadium oxide Mott metal–insulator transition field-effect transistors , 2010 .

[39]  P. Oelhafen,et al.  Oxidation of vanadium with reactive oxygen plasma: A photoelectron spectroscopy study of the initial stages of the oxide growth process , 2007 .

[40]  Yuji Muraoka,et al.  Metal-insulator transition of VO2 thin films grown on TiO2 (001) and (110) substrates , 2002 .

[41]  Jagdish Narayan,et al.  Semiconductor to metal transition characteristics of VO2 thin films grown epitaxially on Si (001) , 2009 .

[42]  Guy Marin,et al.  Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+) , 2004 .

[43]  D. Harame,et al.  SiGe-channel heterojunction p-MOSFET's , 1994 .

[44]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[45]  L. J. Mandalapu,et al.  Low-resistivity Au/Ni Ohmic contacts to Sb-doped p-type Zno , 2007 .

[46]  S. Takagi,et al.  High Electron Mobility Ge n-Channel Metal–Insulator–Semiconductor Field-Effect Transistors Fabricated by the Gate-Last Process with the Solid Source Diffusion Technique , 2010 .