An Artificial Neural Network Approach For Ranking Quenching Parameters In Central Galaxies

We present a novel technique for ranking the relative importance of galaxy properties in the process of quenching star formation. Specifically, we develop an artificial neural network (ANN) approach for pattern recognition and apply it to a population of over 400,000 central galaxies taken from the Sloan Digital Sky Survey Data Release 7. We utilise a variety of physical galaxy properties for training the pattern recognition algorithm to recognise star forming and passive systems, for a `training set' of $\sim$100,000 galaxies. We then apply the ANN model to a `verification set' of $\sim$100,000 different galaxies, randomly chosen from the remaining sample. The success rate of each parameter singly, and in conjunction with other parameters, is taken as an indication of how important the parameters are to the process(es) of central galaxy quenching. We find that central velocity dispersion, bulge mass and B/T are excellent predictors of the passive state of the system, indicating that properties related to the central mass of the galaxy are most closely linked to the cessation of star formation. Larger scale galaxy properties (total or disk stellar masses), or those linked to environment (halo masses or $\delta_5$) perform significantly less well. Our results are plausibly explained by AGN feedback driving the quenching of central galaxies, although we discuss other possibilities as well.

[1]  L. Simard,et al.  Towards a physical picture of star formation quenching: the photometric properties of recently quenched galaxies in the Sloan Digital Sky Survey , 2012, 1211.6115.

[2]  S. Ellison,et al.  Galaxy pairs in the Sloan Digital Sky Survey – XII. The fuelling mechanism of low-excitation radio-loud AGN , 2015, 1504.06255.

[3]  Strangulation as the primary mechanism for shutting down star formation in galaxies , 2015, Nature.

[4]  Mass and Environment as Drivers of Galaxy Evolution. II. The Quenching of Satellite Galaxies as the Origin of Environmental Effects , 2011, 1106.2546.

[5]  O. I. Wong,et al.  The green valley is a red herring: Galaxy Zoo reveals two evolutionary pathways towards quenching of star formation in early-and late-type galaxies , 2014, 1402.4814.

[6]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[7]  H. Mo,et al.  Galaxy Groups in the SDSS DR4. II. Halo Occupation Statistics , 2007, 0710.5096.

[8]  F. Boone,et al.  COMBINED CO AND DUST SCALING RELATIONS OF DEPLETION TIME AND MOLECULAR GAS FRACTIONS WITH COSMIC TIME, SPECIFIC STAR-FORMATION RATE, AND STELLAR MASS , 2014, 1409.1171.

[9]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – V. Tracing changes in star formation rate and metallicity out to separations of 80 kpc , 2012, 1207.4791.

[10]  O. Ilbert,et al.  NEWLY QUENCHED GALAXIES AS THE CAUSE FOR THE APPARENT EVOLUTION IN AVERAGE SIZE OF THE POPULATION , 2013, 1302.5115.

[11]  P. Hopkins,et al.  A Cosmological Framework for the Co-Evolution of Quasars, Supermassive Black Holes, and Elliptical Galaxies. I. Galaxy Mergers and Quasar Activity , 2007, 0706.1243.

[12]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[13]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[14]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[15]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[16]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[17]  R. Nichol,et al.  The Luminosities, Sizes, and Velocity Dispersions of Brightest Cluster Galaxies: Implications for Formation History , 2006, astro-ph/0607117.

[18]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[19]  Simon P. Driver,et al.  Galaxy evolution by color-log(n) type since redshift unity in the Hubble Ultra Deep Field , 2008, 0811.1043.

[20]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[21]  K. Korista,et al.  THE QUASAR OUTFLOW CONTRIBUTION TO AGN FEEDBACK: VLT MEASUREMENTS OF SDSS J0318-0600 , 2009, 0911.3896.

[22]  S. Ellison,et al.  Galaxy pairs in the Sloan Digital Sky Survey – VIII. The observational properties of post-merger galaxies , 2013, 1308.3707.

[23]  Anna Pasquali,et al.  Galaxy Groups in the SDSS DR4. I. The Catalog and Basic Properties , 2007, 0707.4640.

[24]  Determining the Properties and Evolution of Red Galaxies from the Quasar Luminosity Function , 2005, astro-ph/0508167.

[25]  S. More,et al.  Towards a concordant model of halo occupation statistics , 2006, astro-ph/0610686.

[26]  R. Teyssier,et al.  MORPHOLOGICAL QUENCHING OF STAR FORMATION: MAKING EARLY-TYPE GALAXIES RED , 2009, 0905.4669.

[27]  S. Driver,et al.  The Millennium Galaxy Catalogue : morphological classification and bimodality in the colour-concentration plane , 2006, astro-ph/0602240.

[28]  Petri Mähönen,et al.  Automated Star-Galaxy Discrimination for Large Surveys , 2001 .

[29]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[30]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .

[31]  C. Conselice,et al.  On the co-evolution of supermassive black holes and their host galaxies since z= 3 , 2010, 1008.2162.

[32]  L. Simard,et al.  A CATALOG OF BULGE, DISK, AND TOTAL STELLAR MASS ESTIMATES FOR THE SLOAN DIGITAL SKY SURVEY , 2013, 1310.8304.

[33]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[34]  Sara L. Ellison,et al.  Artificial neural network based calibrations for the prediction of galactic [N ii] λ6584 and Hα line luminosities , 2014, 1401.7384.

[35]  S. Faber,et al.  A LINK BETWEEN STAR FORMATION QUENCHING AND INNER STELLAR MASS DENSITY IN SLOAN DIGITAL SKY SURVEY CENTRAL GALAXIES , 2013, 1308.5224.

[36]  I. Jørgensen,et al.  Spectroscopy for E and S0 galaxies in nine clusters , 1995 .

[37]  S. Andreon,et al.  Wide field imaging – I. Applications of neural networks to object detection and star/galaxy classification , 2000, astro-ph/0006115.

[38]  M. Balogh,et al.  The connection between galaxy structure and quenching efficiency , 2014, 1402.3394.

[39]  B. Garilli,et al.  MASS AND ENVIRONMENT AS DRIVERS OF GALAXY EVOLUTION IN SDSS AND zCOSMOS AND THE ORIGIN OF THE SCHECHTER FUNCTION , 2010, 1003.4747.

[40]  Lars Hernquist,et al.  An Observed Fundamental Plane Relation for Supermassive Black Holes , 2007, 0707.4005.

[41]  Timothy M. Heckman,et al.  The host galaxies of active galactic nuclei , 2003 .

[42]  G. Kauffmann,et al.  The formation history of elliptical galaxies , 2005, astro-ph/0509725.

[43]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[44]  L. Simard,et al.  Bulge mass is king: the dominant role of the bulge in determining the fraction of passive galaxies in the Sloan Digital Sky Survey , 2014, 1403.5269.

[45]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[46]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[47]  S. Veilleux,et al.  Massive molecular outflows and evidence for AGN feedback from CO observations , 2013, 1311.2595.

[48]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[49]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[50]  Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang , 2015, Science.

[51]  Laura Ferrarese David Merritt A Fundamental Relation Between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[52]  Britton D. Smith,et al.  THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING , 2011, 1112.2706.

[53]  T. Treu,et al.  A Wide-Field Survey of Two z ~ 0.5 Galaxy Clusters: Identifying the Physical Processes Responsible for the Observed Transformation of Spirals into S0s , 2007, 0707.4173.

[54]  Kyle R. Stewart,et al.  MERGERS AND BULGE FORMATION IN ΛCDM: WHICH MERGERS MATTER? , 2009, 0906.5357.

[55]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[56]  J. Schaye,et al.  Simulating galactic outflows with kinetic supernova feedback , 2008, 0801.2770.

[57]  Sara L. Ellison,et al.  The infrared luminosities of ∼332 000 SDSS galaxies predicted from artificial neural networks and the Herschel Stripe 82 survey , 2015, 1509.09004.

[58]  V. Springel,et al.  Formation of a Spiral Galaxy in a Major Merger , 2004, astro-ph/0411379.

[59]  Durham,et al.  The flip side of galaxy formation: a combined model of galaxy formation and cluster heating , 2008, 0808.2994.

[60]  V. Springel,et al.  Properties of galaxies reproduced by a hydrodynamic simulation , 2014, Nature.

[61]  A. Dekel,et al.  Wet Disc Contraction to Galactic Blue Nuggets and Quenching to Red Nuggets , 2013, 1310.1074.

[62]  Andreas Burkert Thorsten Naab The formation of spheroidal stellar systems , 2003 .

[63]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[64]  H. Mo,et al.  The importance of satellite quenching for the build-up of the red sequence of present-day galaxies , 2007, 0710.3164.

[65]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[66]  O. Cucciati,et al.  Isolated galaxies in hierarchical galaxy formation models - present-day properties and environmental histories , 2013, 1302.3616.

[67]  CEA-Saclay,et al.  THE ROLE OF GALAXY INTERACTION IN THE SFR–M* RELATION: CHARACTERIZING MORPHOLOGICAL PROPERTIES OF Herschel-SELECTED GALAXIES AT 0.2 < z < 1.5 , 2013, 1309.4459.

[68]  Christopher D. Martin,et al.  The GALEX Arecibo SDSS Survey I: gas fraction scaling relations of massive galaxies and first data release , 2009, 0912.1610.

[69]  Andrzej Soƚtan,et al.  Masses of quasars , 1982 .

[70]  Cheng Li,et al.  Erratum: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology , 2010, 1006.0106.

[71]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[72]  S. Lilly,et al.  QUENCHING OF STAR FORMATION IN SLOAN DIGITAL SKY SURVEY GROUPS: CENTRALS, SATELLITES, AND GALACTIC CONFORMITY , 2014, 1408.2553.

[73]  N. Vogt,et al.  The DEEP Groth Strip Survey. II. Hubble Space Telescope Structural Parameters of Galaxies in the Groth Strip , 2002, astro-ph/0205025.

[74]  C. Conselice,et al.  THE DEPENDENCE OF QUENCHING UPON THE INNER STRUCTURE OF GALAXIES AT 0.5 ⩽ z < 0.8 IN THE DEEP2/AEGIS SURVEY , 2012, 1210.4173.

[75]  V. Springel,et al.  An analysis of the evolving comoving number density of galaxies in hydrodynamical simulations , 2015, 1507.01942.

[76]  P. Hopkins,et al.  Star formation in galaxy mergers with realistic models of stellar feedback and the interstellar medium , 2012, 1206.0011.

[77]  E. Bell Galaxy Bulges and their Black Holes: a Requirement for the Quenching of Star Formation , 2008, 0804.4001.

[78]  R. Nichol,et al.  Early-Type Galaxies in the Sloan Digital Sky Survey. I. The Sample , 2003 .

[79]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[80]  Witnessing galaxy preprocessing in the local Universe: the case of a star-bursting group falling into Abell 1367 ⋆ , 2006, astro-ph/0603826.

[81]  S. White,et al.  Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses , 2014, 1410.0365.

[82]  L. Simard,et al.  Why do galaxies stop forming stars? I. The passive fraction - black hole mass relation for central galaxies , 2014, 1412.3862.

[83]  Department of Physics,et al.  The Cluster-Scale AGN Outburst in Hydra A , 2005 .

[84]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[85]  Sukanya Wichchukit,et al.  A Transfer of Technology from Engineering: Use of ROC Curves from Signal Detection Theory to Investigate Information Processing in the Brain during Sensory Difference Testing , 2010, Journal of food science.

[86]  P. Torrey,et al.  Galaxy pairs in the Sloan Digital Sky Survey – VI. The orbital extent of enhanced star formation in interacting galaxies , 2013, 1305.1595.

[87]  Luc Simard,et al.  A CATALOG OF BULGE+DISK DECOMPOSITIONS AND UPDATED PHOTOMETRY FOR 1.12 MILLION GALAXIES IN THE SLOAN DIGITAL SKY SURVEY , 2011, 1107.1518.

[88]  J. Brinkmann,et al.  The physical properties of star-forming galaxies in the low-redshift universe , 2003, astro-ph/0311060.

[89]  H. Ferguson,et al.  BULGE GROWTH AND QUENCHING SINCE z = 2.5 IN CANDELS/3D-HST , 2014, 1402.0866.

[90]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[91]  D. Harris,et al.  Chandra X-Ray Observations of the Hydra A Cluster: An Interaction between the Radio Source and the X-Ray-emitting Gas , 2000, The Astrophysical journal.

[92]  L. Hernquist,et al.  Mapping galaxy encounters in numerical simulations: the spatial extent of induced star formation , 2015, 1501.03573.

[93]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[94]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[95]  R. Nichol,et al.  Quantifying the Bimodal Color-Magnitude Distribution of Galaxies , 2003, astro-ph/0309710.

[96]  D. Wake,et al.  REVEALING VELOCITY DISPERSION AS THE BEST INDICATOR OF A GALAXY's COLOR, COMPARED TO STELLAR MASS, SURFACE MASS DENSITY, OR MORPHOLOGY , 2012, 1201.4998.

[97]  S. Faber,et al.  Two conditions for galaxy quenching: compact centres and massive haloes , 2014, 1406.5372.

[98]  H. Mo,et al.  GALAXY GROUPS IN THE SDSS DR4. III. THE LUMINOSITY AND STELLAR MASS FUNCTIONS , 2008, 0808.0539.

[99]  E. al.,et al.  Early-type galaxies in the SDSS. I. The sample , 2003, astro-ph/0301631.

[100]  B. Garilli,et al.  The zCOSMOS redshift survey: the role of environment and stellar mass in shaping the rise of the morphology-density relation from z ~ 1 , 2009, 0906.4556.

[101]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[102]  Stijn Wuyts,et al.  WHAT TURNS GALAXIES OFF? THE DIFFERENT MORPHOLOGIES OF STAR-FORMING AND QUIESCENT GALAXIES SINCE z ∼ 2 FROM CANDELS , 2011, 1110.3786.

[103]  A. C. Fabian THE OBSCURED GROWTH OF MASSIVE BLACK HOLES , 1999 .

[104]  Andrew C. Fabian,et al.  Observational Evidence of Active Galactic Nuclei Feedback , 2012 .

[105]  D. Hosmer,et al.  Applied Logistic Regression , 1991 .

[106]  Carnegie-Mellon,et al.  A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids , 2005, astro-ph/0506398.

[107]  The Bimodal Galaxy Color Distribution: Dependence on Luminosity and Environment , 2004, astro-ph/0406266.

[108]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .

[109]  Ralf Bender,et al.  The Demography of massive dark objects in galaxy centers , 1997, astro-ph/9708072.

[110]  J. Newman,et al.  Dependence of galaxy quenching on halo mass and distance from its centre , 2012, 1203.1625.

[111]  J. Tinker,et al.  Galaxy evolution in groups and clusters: satellite star formation histories and quenching time-scales in a hierarchical Universe , 2012, 1206.3571.

[112]  H. Teimoorinia,et al.  SPECTRAL CLASSIFICATION OF GALAXIES AT 0.5 ⩽ z ⩽ 1 IN THE CDFS: THE ARTIFICIAL NEURAL NETWORK APPROACH , 2012 .

[113]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[114]  A. McConnachie,et al.  GALAXY PAIRS IN THE SLOAN DIGITAL SKY SURVEY. I. STAR FORMATION, ACTIVE GALACTIC NUCLEUS FRACTION, AND THE LUMINOSITY/MASS–METALLICITY RELATION , 2008, 0803.0161.

[115]  S. Okamura,et al.  Galaxy types in the Sloan Digital Sky survey using supervised artificial neural networks , 2003, astro-ph/0306390.

[116]  L. Simard,et al.  The neutral gas content of post-merger galaxies , 2015, 1501.03114.

[117]  Simon P. Driver,et al.  THE MILLENNIUM GALAXY CATALOGUE: EXPLORING THE COLOR–CONCENTRATION BIMODALITY VIA BULGE–DISK DECOMPOSITION , 2009, 0904.3096.

[118]  L. Hernquist,et al.  Dynamics of Interacting Galaxies , 1992 .