The stages of type 1A diabetes: 2005

Summary:  Type 1A diabetes is a chronic autoimmune disease usually preceded by a long prodrome during which autoantibodies to islet autoantigens are present. These antibodies are directed to a variety of antigens, but the best characterized are glutamic acid decarboxylase‐65, insulinoma‐associated antigen‐2, and insulin. We hypothesize that the natural history of type 1A diabetes can be represented by several stages, starting from genetic susceptibility and ending in complete β‐cell destruction and overt diabetes. Type 1A diabetes probably results from a balance between genetic susceptibility and environmental influences. In both humans and animal models, the major determinants of the disease are genes within the major histocompatibility complex. The next best‐characterized susceptibility locus is the insulin gene, the variable nucleotide tandem repeat locus. This gene affects the expression of insulin in the thymus and thus may play a role in the modulation of tolerance to this molecule. In a subset of genetically susceptible individuals, the activation of autoimmunity may be triggered by environmental factors such as viruses and/or diet. However, no conclusive association has been established between type 1A diabetes and specific environmental triggers. In this review, we provide evidence that insulin has a fundamental role in anti‐islet autoimmunity.

[1]  W. Caspary,et al.  Celiac disease , 2006, Orphanet journal of rare diseases.

[2]  G. Eisenbarth,et al.  The Stages of Type 1A Diabetes , 2005, Annals of the New York Academy of Sciences.

[3]  G. Eisenbarth,et al.  Analysis of children with type 1 diabetes in Korea: high prevalence of specific anti-islet autoantibodies, immunogenetic similarities to Western populations with "unique" haplotypes, and lack of discrimination by aspartic acid at position 57 of DQB. , 2004, Clinical immunology.

[4]  M. Rewers,et al.  Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). , 2004, The Journal of clinical endocrinology and metabolism.

[5]  J. She,et al.  A functional variant of SUMO4, a new IκBα modifier, is associated with type 1 diabetes , 2004, Nature Genetics.

[6]  G. Eisenbarth,et al.  Differential immune response to B:9-23 insulin 1 and insulin 2 peptides in animal models of type 1 diabetes. , 2004, Journal of autoimmunity.

[7]  Heather J Cordell,et al.  Absolute risk of childhood-onset type 1 diabetes defined by human leukocyte antigen class II genotype: a population-based study in the United Kingdom. , 2004, The Journal of clinical endocrinology and metabolism.

[8]  J. Wasfy Childhood vaccination and type 1 diabetes. , 2004, The New England journal of medicine.

[9]  T. Tuvemo,et al.  Enterovirus infections with β‐cell tropic strains are frequent in siblings of children diagnosed with type 1 diabetes children and in association with elevated levels of GAD65 antibodies , 2004, Journal of medical virology.

[10]  J. Bilbao,et al.  Prospective Population Screening for Celiac Disease: High Prevalence in the First 3 Years of Life , 2004, Journal of pediatric gastroenterology and nutrition.

[11]  A. Ide,et al.  Genetic differentiation of poly I:C from B:9-23 peptide induced experimental autoimmune diabetes. , 2004, Journal of autoimmunity.

[12]  M. Rewers,et al.  Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up. , 2004, Diabetes care.

[13]  G. Eisenbarth,et al.  Interferon alpha--a potential link in the pathogenesis of viral-induced type 1 diabetes and autoimmunity. , 2004, Clinical immunology.

[14]  M. Rewers,et al.  Clinical features of children with screening-identified evidence of celiac disease. , 2004, Pediatrics.

[15]  T. Ogihara,et al.  Allelic variation in class I K gene as candidate for a second component of MHC-linked susceptibility to Type 1 diabetes in non-obese diabetic mice , 2004, Diabetologia.

[16]  E. Gale European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes , 2004, The Lancet.

[17]  H. Davidson,et al.  HLA-DQ8-Associated T Cell Responses to the Diabetes Autoantigen Phogrin (IA-2β) in Human Prediabetes1 , 2004, The Journal of Immunology.

[18]  Nunzio Bottini,et al.  A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes , 2004, Nature Genetics.

[19]  H. Hyöty Environmental causes: viral causes. , 2004, Endocrinology and metabolism clinics of North America.

[20]  K. Herold Treatment of type 1 diabetes mellitus to preserve insulin secretion. , 2004, Endocrinology and metabolism clinics of North America.

[21]  P. Bingley,et al.  Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. , 2004, Diabetes.

[22]  K. Klingel,et al.  Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells , 2004, Diabetologia.

[23]  S. Pearce,et al.  Mutational analysis of the FOXP3 gene and evidence for genetic heterogeneity in the immunodysregulation, polyendocrinopathy, enteropathy syndrome. , 2003, The Journal of clinical endocrinology and metabolism.

[24]  E. Bonifacio,et al.  The Second Murine Autoantibody Workshop , 2003 .

[25]  G. Eisenbarth,et al.  Nondepleting anti-CD4 monoclonal antibody prevents diabetes and blocks induction of insulin autoantibodies following insulin peptide B:9-23 immunization in the NOD mouse. , 2003, Journal of autoimmunity.

[26]  E. Bonifacio,et al.  Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. , 2003, JAMA.

[27]  M. Rewers,et al.  Timing of initial cereal exposure in infancy and risk of islet autoimmunity. , 2003, JAMA.

[28]  M. Knip,et al.  Intranasally administered insulin intended for prevention of type 1 diabetes—a safety study in healthy adults , 2003, Diabetes/metabolism research and reviews.

[29]  J. Bluestone,et al.  TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes , 2003, Nature Medicine.

[30]  G. Eisenbarth,et al.  Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the nonobese diabetic mouse , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Wildin,et al.  Rescue of the autoimmune scurfy mouse by partial bone marrow transplantation or by injection with T‐enriched splenocytes , 2003, Clinical and experimental immunology.

[32]  H. Ochs,et al.  Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis , 2003, Current opinion in rheumatology.

[33]  J. Shabanowitz,et al.  Identification of the β cell antigen targeted by a prevalent population of pathogenic CD8+ T cells in autoimmune diabetes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  I. Cohen,et al.  T cells and autoantibodies to human HSP70 in type 1 diabetes in children. , 2003, Journal of autoimmunity.

[35]  Luc J. Smink,et al.  Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease , 2003, Nature.

[36]  A. Hämäläinen,et al.  Enterovirus infections as a risk factor for type I diabetes: virus analyses in a dietary intervention trial , 2003, Clinical and experimental immunology.

[37]  C. Boitard,et al.  Acceleration of type 1 diabetes mellitus in proinsulin 2-deficient NOD mice. , 2003, The Journal of clinical investigation.

[38]  A. Rudensky,et al.  Foxp3 programs the development and function of CD4+CD25+ regulatory T cells , 2003, Nature Immunology.

[39]  D. Finegood,et al.  Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. , 2003, The Journal of clinical investigation.

[40]  J. Ilonen,et al.  First-phase insulin response in young healthy children at genetic and immunological risk for Type I diabetes , 2002, Diabetologia.

[41]  S. Rich,et al.  Challenges and strategies for investigating the genetic complexity of common human diseases. , 2002, Diabetes.

[42]  S. Honda,et al.  During the early prediabetic period in NOD mice, the pathogenic CD8(+) T-cell population comprises multiple antigenic specificities. , 2002, Clinical immunology.

[43]  C. Boitard,et al.  Normal renal function 8 to 13 years after Cyclosporin A therapy in 285 diabetic patients , 2002, Diabetes/metabolism research and reviews.

[44]  Mark S. Anderson,et al.  Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein , 2002, Science.

[45]  J. Killestein Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. , 2002, The New England journal of medicine.

[46]  F. Finkelman,et al.  Anti-peptide autoantibodies and fatal anaphylaxis in NOD mice in response to insulin self-peptides B:9-23 and B:13-23. , 2002, The Journal of clinical investigation.

[47]  J. K. Oeser,et al.  Identification and characterization of a human cDNA and gene encoding a ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein. , 2002, Journal of molecular endocrinology.

[48]  J. Bach,et al.  The effect of infections on susceptibility to autoimmune and allergic diseases. , 2002, The New England journal of medicine.

[49]  A. Filipovich,et al.  Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome , 2002, Journal of medical genetics.

[50]  M. Rewers,et al.  Additional association of intra-MHC genes, MICA and D6S273, with Addison's disease. , 2002, Tissue antigens.

[51]  M. Atkinson Heat shock protein therapy fails to prevent diabetes in NOD mice , 2002, Diabetologia.

[52]  D. Wegmann,et al.  Immunological characterization and therapeutic activity of an altered-peptide ligand, NBI-6024, based on the immunodominant type 1 diabetes autoantigen insulin B-chain (9-23) peptide. , 2002, Diabetes.

[53]  F. Mantero,et al.  Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. , 2002, Endocrine reviews.

[54]  L. Peltonen,et al.  AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy phenotype. , 2002, The Journal of clinical endocrinology and metabolism.

[55]  L. Wen,et al.  Induction and acceleration of insulitis/diabetes in mice with a viral mimic (polyinosinic-polycytidylic acid) and an insulin self-peptide , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[56]  G. Eisenbarth,et al.  Induction of Insulin Autoantibodies and Protection from Diabetes with Subcutaneous Insulin B: 9‐23 Peptide without Adjuvant , 2002, Annals of the New York Academy of Sciences.

[57]  E. Bonifacio,et al.  International Workshop on Lessons from Animal Models for Human Type 1 Diabetes , 2002, Annals of the New York Academy of Sciences.

[58]  W. Hagopian,et al.  Successful prospective prediction of type 1 diabetes in schoolchildren through multiple defined autoantibodies: an 8-year follow-up of the Washington State Diabetes Prediction Study. , 2002, Diabetes care.

[59]  L. Peltonen,et al.  Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. , 2002, Human molecular genetics.

[60]  T. Ogihara,et al.  Asian-specific HLA haplotypes reveal heterogeneity of the contribution of HLA-DR and -DQ haplotypes to susceptibility to type 1 diabetes. , 2002, Diabetes.

[61]  E. Husebye,et al.  Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features. , 2002, The Journal of clinical endocrinology and metabolism.

[62]  I. Cohen,et al.  β-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial , 2001, The Lancet.

[63]  G. Eisenbarth,et al.  Evidence That a Peptide Spanning the B-C Junction of Proinsulin Is an Early Autoantigen Epitope in the Pathogenesis of Type 1 Diabetes1 , 2001, The Journal of Immunology.

[64]  Don C. Wiley,et al.  Structure of a human insulin peptide–HLA-DQ8 complex and susceptibility to type 1 diabetes , 2001, Nature Immunology.

[65]  G. Eisenbarth,et al.  Peptide and major histocompatibility complex-specific breaking of humoral tolerance to native insulin with the B9-23 peptide in diabetes-prone and normal mice. , 2001, Diabetes.

[66]  Y. Matsuzawa,et al.  Pancreatic biopsy as a procedure for detecting in situ autoimmune phenomena in type 1 diabetes: close correlation between serological markers and histological evidence of cellular autoimmunity. , 2001, Diabetes.

[67]  J. Bach Protective role of infections and vaccinations on autoimmune diseases. , 2001, Journal of autoimmunity.

[68]  C. Ricordi,et al.  Differential splicing of the IA-2 mRNA in pancreas and lymphoid organs as a permissive genetic mechanism for autoimmunity against the IA-2 type 1 diabetes autoantigen. , 2001, Diabetes.

[69]  G. Eisenbarth,et al.  Heterogeneity of Type I diabetes: analysis of monozygotic twins in Great Britain and the United States , 2001, Diabetologia.

[70]  L. Molinari,et al.  Epidemiology of Type I diabetes mellitus in Switzerland: steep rise in incidence in under 5 year old children in the past decade , 2001, Diabetologia.

[71]  K. Haskins,et al.  Comparison of a T Cell Clone and of T Cells from a TCR Transgenic Mouse: TCR Transgenic T Cells Specific for Self-Antigen Are Atypical1 , 2001, The Journal of Immunology.

[72]  Darrell M. Wilson,et al.  First-phase insulin release during the intravenous glucose tolerance test as a risk factor for type 1 diabetes. , 2001, The Journal of pediatrics.

[73]  G. Eisenbarth,et al.  Rapid assays for detection of anti-islet autoantibodies: implications for organ donor screening. , 2001, Journal of autoimmunity.

[74]  A. Gaur,et al.  A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. , 2001, The Journal of clinical investigation.

[75]  D. Wegmann,et al.  It's insulin. , 2000, Journal of autoimmunity.

[76]  J. Tuomilehto,et al.  Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. , 2000, Diabetes care.

[77]  S. Tafuro,et al.  Progression of autoimmune diabetes driven by avidity maturation of a T-cell population , 2000, Nature.

[78]  E. Unanue,et al.  Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. , 2000, Immunity.

[79]  K. Garcia,et al.  A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. , 2000, Science.

[80]  L. Harrison,et al.  Lack of association between duration of breast-feeding or introduction of cow's milk and development of islet autoimmunity. , 1999, Diabetes.

[81]  A. Arrieta,et al.  Antibodies to gliadin, endomysium, and tissue transglutaminase for the diagnosis of celiac disease. , 1999, Journal of pediatric gastroenterology and nutrition.

[82]  P. Brunetti,et al.  Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison's disease. , 1999, The Journal of clinical endocrinology and metabolism.

[83]  C. Janeway,et al.  Identification of an MHC class I-restricted autoantigen in type 1 diabetes by screening an organ-specific cDNA library , 1999, Nature Medicine.

[84]  H. Weiner,et al.  Cutting edge: homologous recombination of the MHC class I K region defines new MHC-linked diabetogenic susceptibility gene(s) in nonobese diabetic mice. , 1999, Journal of immunology.

[85]  M. Rewers,et al.  One third of HLA DQ2 homozygous patients with type 1 diabetes express celiac disease-associated transglutaminase autoantibodies. , 1999, Journal of autoimmunity.

[86]  M. Atkinson,et al.  The NOD mouse model of type 1 diabetes: As good as it gets? , 1999, Nature Medicine.

[87]  A. Ziegler,et al.  Early expression and high prevalence of islet autoantibodies for DR3/4 heterozygous and DR4/4 homozygous offspring of parents with Type I diabetes: The German BABYDIAB study , 1999, Diabetologia.

[88]  H. Erlich,et al.  Sequence analysis of the diabetes-protective human leukocyte antigen-DQB1*0602 allele in unaffected, islet cell antibody-positive first degree relatives and in rare patients with type 1 diabetes. , 1999, The Journal of clinical endocrinology and metabolism.

[89]  I. Mackay,et al.  Genetic heterogeneity of autoimmune diabetes: age of presentation in adults is influenced by HLA DRB1 and DQB1 genotypes (UKPDS 43) , 1999, Diabetologia.

[90]  S. Ziegler,et al.  Cellular and molecular characterization of the scurfy mouse mutant. , 1999, Journal of immunology.

[91]  H. Kolb,et al.  Nicotinamide in type 1 diabetes. Mechanism of action revisited. , 1999, Diabetes care.

[92]  C. Benoist,et al.  Initiation of Autoimmune Diabetes by Developmentally Regulated Presentation of Islet Cell Antigens in the Pancreatic Lymph Nodes , 1999, The Journal of experimental medicine.

[93]  H. Mcdevitt,et al.  The role of MHC class II molecules in susceptibility and resistance to autoimmunity. , 1998, Current opinion in immunology.

[94]  P. Bingley,et al.  Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. , 1998, Diabetes.

[95]  M. Lan,et al.  Ia-2 and IA-2β : The immune response in IDDM , 1998 .

[96]  L. Peltonen,et al.  An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains , 1997, Nature Genetics.

[97]  P. Charukamnoetkanok,et al.  Thymic expression of autoantigens correlates with resistance to autoimmune disease. , 1997, Journal of immunology.

[98]  E. Unanue,et al.  Insights into the chemistry and biology of the I-Ag7 class II molecule. , 1997, Research in immunology.

[99]  R. Joshi,et al.  Phenotypic alterations in insulin-deficient mutant mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[100]  J. Todd,et al.  Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus , 1997, Nature Genetics.

[101]  Camillo Ricordi,et al.  The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes , 1997, Nature Genetics.

[102]  G. Eisenbarth,et al.  Cyclosporine delays but does not prevent clinical onset in glucose intolerant pre-type 1 diabetic children. , 1996, Journal of autoimmunity.

[103]  J. Hutton,et al.  Identification of the 37-kDa Antigen in IDDM as a Tyrosine Phosphatase-Like Protein (Phogrin) Related to IA-2 , 1996, Diabetes.

[104]  M. Rewers,et al.  Lack of association between early exposure to cow's milk protein and beta-cell autoimmunity. Diabetes Autoimmunity Study in the Young (DAISY) , 1996, JAMA.

[105]  H. Chase,et al.  Prediction of Type I Diabetes in First-Degree Relatives Using a Combination of Insulin, GAD, and ICA512bdc/IA-2 Autoantibodies , 1996, Diabetes.

[106]  R. Tisch,et al.  The Role of MHC Class II Genes in Susceptibility and Resistance to Type I Diabetes Mellitus in the NOD Mouse , 1996, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.

[107]  G. Eisenbarth,et al.  Late Progression to Diabetes and Evidence for Chronic β-Cell Autoimmunity in Identical Twins of Patients With Type I Diabetes , 1995, Diabetes.

[108]  H. Erlich,et al.  HLA-DQB1*0602 Is Associated With Dominant Protection From Diabetes Even Among Islet Cell Antibody–Positive First-Degree Relatives of Patients with IDDM , 1995, Diabetes.

[109]  D. Wegmann,et al.  Epitope specificity, cytokine production profile and diabetogenic activity of insulin‐specific T cell clones isolated from NOD mice , 1995, European journal of immunology.

[110]  R. Gill,et al.  Analysis of the spontaneous T cell response to insulin in NOD mice. , 1994, Journal of autoimmunity.

[111]  P. Bingley,et al.  Combined Analysis of Autoantibodies Improves Prediction of IDDM in Islet Cell Antibody-Positive Relatives , 1994, Diabetes.

[112]  E. Bonifacio,et al.  Antibodies to Islet 37k Antigen, But Not to Glutamate Decarboxylase, Discriminate Rapid Progression to IDDM in Endocrine Autoimmunity , 1994, Diabetes.

[113]  A. Ariza,et al.  Pancreas in recent onset insulin-dependent diabetes mellitus. Changes in HLA, adhesion molecules and autoantigens, restricted T cell receptor V beta usage, and cytokine profile. , 1994, Journal of immunology.

[114]  J. Ilonen,et al.  A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus , 1994, The New England journal of medicine.

[115]  L. Velloso,et al.  GAD Autoantibodies in IDDM, Stiff-Man Syndrome, and Autoimmune Polyendocrine Syndrome Type I Recognize Different Epitopes , 1994, Diabetes.

[116]  D. Faustman,et al.  Faulty Major Histocompatibility Complex Class II I-E Expression is Associated With Autoimmunity in Diverse Strains of Mice: Autoantibodies, Insulitis, and Sialadenitis , 1993, Diabetes.

[117]  H. Kolb,et al.  Insulin autoantibodies measured by radioimmunoassay methodology are more related to insulin-dependent diabetes mellitus than those measured by enzyme-linked immunosorbent assay: results of the Fourth International Workshop on the Standardization of Insulin Autoantibody Measurement. , 1992, The Journal of clinical endocrinology and metabolism.

[118]  E. Bonifacio,et al.  Distinct cytoplasmic islet cell antibodies with different risks for Type 1 (insulin-dependent) diabetes mellitus , 1992, Diabetologia.

[119]  S. Bonner-Weir,et al.  Prognostically Significant Heterogeneity of Cytoplasmic Islet Cell Antibodies in Relatives of Patients with Type I Diabetes , 1992, Diabetes.

[120]  S. Brink,et al.  Predictive value of intravenous glucose tolerance test insulin secretion less than or greater than the first percentile in islet cell antibody positive relatives of Type 1 (insulin-dependent) diabetic patients , 1991, Diabetologia.

[121]  B. Boehm,et al.  Aspartic acid at position 57 of the HLA-DQβ chain is protective against future development of insulin-dependent (Type 1) diabetes mellitus , 1991, Klinische Wochenschrift.

[122]  R E LaPorte,et al.  Worldwide differences in the incidence of type I diabetes are associated with amino acid variation at position 57 of the HLA-DQ beta chain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[123]  S. Baekkeskov,et al.  Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase , 1990, Nature.

[124]  D. Daneman,et al.  Distinct antibody specificities to a 64-kD islet cell antigen in type 1 diabetes as revealed by trypsin treatment , 1990, The Journal of experimental medicine.

[125]  J. D. Capra,et al.  Analysis of HLA-DQ genotypes and susceptibility in insulin-dependent diabetes mellitus. , 1990, The New England journal of medicine.

[126]  Y. Iwamoto,et al.  High Frequency of Aspartic Acid at Position 57 of HLA-DQ β-Chain in Japanese IDDM Patients and Nondiabetic Subjects , 1990, Diabetes.

[127]  E. Gale,et al.  Rising Incidence of IDDM in Europe , 1989, Diabetes Care.

[128]  R. Bergman,et al.  Defects in β-Cell Function and Insulin Sensitivity in Normoglycemic Streptozocin-Treated Baboons: A Model of Preclinical Insulin-Dependent Diabetes* , 1988 .

[129]  A. Ziegler,et al.  Concentration of Insulin Autoantibodies at Onset of Type I Diabetes: Inverse Log-Linear Correlation With Age , 1988, Diabetes Care.

[130]  G. Eisenbarth,et al.  Congenital rubella. Monoclonal antibody-defined T cell abnormalities in young adults. , 1986, The American journal of medicine.

[131]  G. Eisenbarth Type I diabetes mellitus. A chronic autoimmune disease. , 1986 .

[132]  W. Clarke,et al.  Autoimmunity in congenital rubella syndrome. , 1984, The Journal of pediatrics.

[133]  J. Palmer,et al.  Insulin antibodies in insulin-dependent diabetics before insulin treatment. , 1983, Science.

[134]  R. Gleason,et al.  Type I diabetes mellitus in monozygotic twins: chronic progressive beta cell dysfunction. , 1983, Annals of internal medicine.

[135]  G. Eisenbarth,et al.  Islet-cell antibodies and beta-cell function in monozygotic triplets and twins initially discordant for Type I diabetes mellitus. , 1983, The New England journal of medicine.

[136]  N. Maclaren,et al.  Two Types of Autoimmune Addison's Disease Associated with Different Polyglandular Autoimmune (PGA) Syndromes , 1981, Medicine.

[137]  D. Pyke,et al.  Diabetes in identical twins , 1981, Diabetologia.

[138]  G. Eisenbarth,et al.  HLA type and occurrence of disease in familial polyglandular failure. , 1978, The New England journal of medicine.

[139]  D. Doniach,et al.  Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. , 1974, Lancet.

[140]  I. Doniach,et al.  ISLETS OF LANGERHANS IN JUVENILE DIABETES MELLITUS , 1973, Clinical endocrinology.

[141]  W. Gepts Pathologic Anatomy of the Pancreas in Juvenile Diabetes Mellitus , 1965, Diabetes.

[142]  G. A. Fleming,et al.  C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve beta-cell function: report of an ADA workshop, 21-22 October 2001. , 2004, Diabetes.

[143]  G. Eisenbarth,et al.  Type 1 diabetes mellitus of man: genetic susceptibility and resistance. , 2004, Advances in experimental medicine and biology.

[144]  Yan Zhang,et al.  A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. , 2004, Nature genetics.

[145]  J. Todd,et al.  Evidence of at least two type 1 diabetes susceptibility genes in the HLA complex distinct from HLA-DQB1, -DQA1 and –DRB1 , 2003, Genes and Immunity.

[146]  H. Ochs,et al.  The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 , 2001, Nature Genetics.

[147]  I. Cohen,et al.  Beta-cell function in new-onset type 1 diabetes and immunomodulation with a heat-shock protein peptide (DiaPep277): a randomised, double-blind, phase II trial. , 2001, Lancet.

[148]  M. Rewers,et al.  DRB1104 and DQ Alleles: Expression of 21-Hydroxylase Autoantibodies and Risk of Progression to Addison’s Disease1 , 1999 .

[149]  M. Rewers,et al.  Addison’s Disease* , 2022 .

[150]  M. Lan,et al.  IA-2 and IA-2beta: the immune response in IDDM. , 1998, Diabetes Metabolism Reviews.

[151]  P. Westermark Pathology of the pancreas in diabetes mellitus , 1997 .

[152]  H. Erlich,et al.  Association of susceptibility to multiple sclerosis in Sweden with HLA class II DRB1 and DQB1 alleles. , 1994, Human immunology.

[153]  A. Tobin,et al.  Islet cell cytoplasmic autoantibody reactivity to glutamate decarboxylase in insulin-dependent diabetes. , 1993, The Journal of clinical investigation.

[154]  J. Miyazaki,et al.  Complete prevention of diabetes in transgenic NOD mice expressing I-E molecules. , 1992, Immunology letters.

[155]  H. Erlich,et al.  MHC class-II molecules and autoimmunity. , 1991, Annual review of immunology.

[156]  W. Klitz,et al.  HLA and insulin gene associations with IDDM , 1989, Genetic epidemiology.

[157]  R. Bergman,et al.  Defects in beta-cell function and insulin sensitivity in normoglycemic streptozocin-treated baboons: a model of preclinical insulin-dependent diabetes. , 1988, The Journal of clinical endocrinology and metabolism.

[158]  A. Michael,et al.  Twin-to-twin pancreas transplantation: reversal and reenactment of the pathogenesis of type I diabetes. , 1984, Transactions of the Association of American Physicians.