Maximal supports and Schur-positivity among connected skew shapes

The Schur-positivity order on skew shapes is defined by [email protected]?A if the difference s"A-s"B is Schur-positive. It is an open problem to determine those connected skew shapes that are maximal with respect to this ordering. A strong necessary condition for the Schur-positivity of s"A-s"B is that the support of B is contained in that of A, where the support of B is defined to be the set of partitions @l for which s"@l appears in the Schur expansion of s"B. We show that to determine the maximal connected skew shapes in the Schur-positivity order and this support containment order, it suffices to consider a special class of ribbon shapes. We explicitly determine the support for these ribbon shapes, thereby determining the maximal connected skew shapes in the support containment order.

[1]  Stephanie van Willigenburg,et al.  Equality of Schur and Skew Schur Functions , 2004 .

[2]  Peter R. W. McNamara,et al.  Positivity results on ribbon Schur function differences , 2007, Eur. J. Comb..

[3]  Victor Reiner,et al.  Coincidences among skew Schur functions , 2006 .

[4]  On the invariant factors , 1976 .

[5]  On products of sln characters and support containment , 2006, math/0608134.

[6]  Tsit Yuen Lam,et al.  Young diagrams, Schur functions, the Gale-Ryser theorem and a conjecture of snapper , 1977 .

[7]  A. Conflitti,et al.  MULTIPLICITY-FREE SKEW SCHUR FUNCTIONS WITH INTERVAL SUPPORT , 2010 .

[8]  R. Tennant Algebra , 1941, Nature.

[9]  William Fulton,et al.  Eigenvalues, singular values, and Littlewood-Richardson coefficients , 2003 .

[10]  Peter R. W. McNamara Necessary conditions for Schur-positivity , 2007, 0706.1800.

[11]  Alain Lascoux,et al.  Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties , 1995 .

[12]  I. Gessel Multipartite P-partitions and inner products of skew Schur functions , 1983 .

[13]  Marcel Paul Schützenberger,et al.  La correspondance de Robinson , 1977 .

[14]  R. Lathe Phd by thesis , 1988, Nature.

[15]  A. Pressley,et al.  Quantum affine algebras , 1991 .

[16]  Riccardo Biagioli,et al.  Inequalities between Littlewood-Richardson coefficients , 2006, J. Comb. Theory, Ser. A.

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  K. Fernow New York , 1896, American Potato Journal.

[19]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[20]  Glânffrwd P Thomas On Schensted's construction and the multiplication of schur functions , 1978 .

[21]  Christian Gutschwager Equality of multiplicity free skew characters , 2008 .

[22]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[23]  D. Foata,et al.  Combinatoire et Représentation du Groupe Symétrique , 1977 .

[24]  L. Billera,et al.  Decomposable compositions, symmetric quasisymmetric functions and equality of ribbon Schur functions , 2004 .

[25]  D. E. Littlewood,et al.  Group Characters and Algebra , 1934 .

[26]  Stephanie van Willigenburg,et al.  Towards a Combinatorial Classification of Skew Schur Functions , 2006 .

[27]  A. C. Aitken Note on Dual Symmetric Functions , 1931 .

[28]  B. M. Fulk MATH , 1992 .

[29]  Andrei Okounkov,et al.  Log-Concavity of Multiplicities with Application to Characters ofU(∞)☆ , 1997 .

[30]  Trevor A. Welsh,et al.  Schur positivity of skew Schur function differences and applications to ribbons and Schubert classes , 2007, 0706.3253.

[31]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[32]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[33]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[34]  Anatol N. Kirillov An Invitation to the Generalized Saturation Conjecture , 2004 .

[35]  Thomas Lam,et al.  Schur positivity and Schur log-concavity , 2005 .

[36]  W. Fulton Eigenvalues, invariant factors, highest weights, and Schubert calculus , 1999, math/9908012.