VARIATIONAL PARTICLE SCHEMES FOR THE POROUS MEDIUM EQUATION AND FOR THE SYSTEM OF ISENTROPIC EULER EQUATIONS

We introduce variational particle schemes for the porous medium equation and the system of isentropic Euler equations in one space dimension. The methods are motivated by the interpretation of each of these partial differential equations as a 'steepest descent' on a suitable abstract manifold. We show that our methods capture very well the nonlinear features of the flows.

[1]  C. Dafermos The entropy rate admissibility criterion for solutions of hyperbolic conservation laws , 1973 .

[2]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[3]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[4]  Darryl D. Holm,et al.  The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.

[5]  V. Arnold,et al.  Topological methods in hydrodynamics , 1998 .

[6]  V. Arnold,et al.  Topological methods in hydrodynamics Applied Mathematical Sciences 125 , 1998 .

[7]  D. Kinderlehrer,et al.  Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .

[8]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[9]  E. Hairer,et al.  Solving Ordinary ,Differential Equations I, Nonstiff problems/E. Hairer, S. P. Norsett, G. Wanner, Second Revised Edition with 135 Figures, Vol.: 1 , 2000 .

[10]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[11]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[12]  Gui-Qiang G. Chen,et al.  The Cauchy Problem for the Euler Equations for Compressible Fluids , 2002 .

[13]  C. Villani Topics in Optimal Transportation , 2003 .

[14]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[15]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[16]  J. Vázquez Perspectives in nonlinear diffusion: between analysis, physics and geometry , 2006 .

[17]  W. Gangbo,et al.  Optimal Transport for the System of Isentropic Euler Equations , 2009 .