VARIATIONAL PARTICLE SCHEMES FOR THE POROUS MEDIUM EQUATION AND FOR THE SYSTEM OF ISENTROPIC EULER EQUATIONS
暂无分享,去创建一个
[1] C. Dafermos. The entropy rate admissibility criterion for solutions of hyperbolic conservation laws , 1973 .
[2] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[3] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[4] Darryl D. Holm,et al. The Euler–Poincaré Equations and Semidirect Products with Applications to Continuum Theories , 1998, chao-dyn/9801015.
[5] V. Arnold,et al. Topological methods in hydrodynamics , 1998 .
[6] V. Arnold,et al. Topological methods in hydrodynamics Applied Mathematical Sciences 125 , 1998 .
[7] D. Kinderlehrer,et al. Approximation of Parabolic Equations Using the Wasserstein Metric , 1999 .
[8] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[9] E. Hairer,et al. Solving Ordinary ,Differential Equations I, Nonstiff problems/E. Hairer, S. P. Norsett, G. Wanner, Second Revised Edition with 135 Figures, Vol.: 1 , 2000 .
[10] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[11] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[12] Gui-Qiang G. Chen,et al. The Cauchy Problem for the Euler Equations for Compressible Fluids , 2002 .
[13] C. Villani. Topics in Optimal Transportation , 2003 .
[14] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[15] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[16] J. Vázquez. Perspectives in nonlinear diffusion: between analysis, physics and geometry , 2006 .
[17] W. Gangbo,et al. Optimal Transport for the System of Isentropic Euler Equations , 2009 .