Arena Model: Inference About Competitions

The authors propose a parametric model called the arena model for prediction in paired competitions, i.e. paired comparisons with eliminations and bifurcations. The arena model has a number of appealing advantages. First, it predicts the results of competitions without rating many individuals. Second, it takes full advantage of the structure of competitions. Third, the model provides an easy method to quantify the uncertainty in competitions. Fourth, some of our methods can be directly generalized for comparisons among three or more individuals. Furthermore, the authors identify an invariant Bayes estimator with regard to the prior distribution and prove the consistency of the estimations of uncertainty. Currently, the arena model is not effective in tracking the change of strengths of individuals, but its basic framework provides a solid foundation for future study of such cases.

[1]  Martin J. Wainwright,et al.  Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues , 2015, IEEE Transactions on Information Theory.

[2]  Harry Joe,et al.  Majorization, entropy and paired comparisons , 1988 .

[3]  D. Aldous Elo Ratings and the Sports Model: A Neglected Topic in Applied Probability? , 2017 .

[4]  H. Robbins,et al.  A Sequential Procedure for Selecting the Largest of $k$ Means , 1968 .

[5]  L. Fahrmeir,et al.  Dynamic Stochastic Models for Time-Dependent Ordered Paired Comparison Systems , 1994 .

[6]  Mark E. Glickman,et al.  Dynamic paired comparison models with stochastic variances , 2001 .

[7]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[8]  E. Zermelo Die Berechnung der Turnier-Ergebnisse als ein Maximumproblem der Wahrscheinlichkeitsrechnung , 1929 .

[9]  R. Bechhofer A Single-Sample Multiple Decision Procedure for Ranking Means of Normal Populations with known Variances , 1954 .

[10]  L. Thurstone A law of comparative judgment. , 1994 .

[11]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[12]  F. Mosteller,et al.  Remarks on the method of paired comparisons: III. A test of significance for paired comparisons when equal standard deviations and equal correlations are assumed , 1951, Psychometrika.

[13]  D. Hunter MM algorithms for generalized Bradley-Terry models , 2003 .

[14]  F. Mosteller Remarks on the method of paired comparisons: II. The effect of an aberrant standard deviation when equal standard deviations and equal correlations are assumed. , 1951, Psychometrika.

[15]  Mark E. GLICKMAN,et al.  A State-Space Model for National Football League Scores , 1998 .

[16]  Franz J. Király,et al.  Modelling Competitive Sports: Bradley-Terry-Élő Models for Supervised and On-Line Learning of Paired Competition Outcomes , 2017, ArXiv.

[17]  K. D. Tocher,et al.  The art of simulation , 1967 .

[18]  Louis Guttman,et al.  An Approach for Quantifying Paired Comparisons and Rank Order , 1946 .

[19]  L. Thurstone PSYCHOPHYSICAL ANALYSIS , 2008 .

[20]  H. A. David,et al.  Ties in Paired-Comparison Experiments Using a Modified Thurstone-Mosteller Model , 1960 .

[21]  Stephanie Kovalchik,et al.  Searching for the GOAT of tennis win prediction , 2016 .

[22]  Manuela Cattelan,et al.  Models for Paired Comparison Data: A Review with Emphasis on Dependent Data , 2012, 1210.1016.

[23]  F. Mosteller Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations , 1951 .

[24]  L. Knorr‐Held Dynamic Rating of Sports Teams , 2000 .

[25]  M. Glickman Parameter Estimation in Large Dynamic Paired Comparison Experiments , 1999 .

[26]  M. Kendall,et al.  ON THE METHOD OF PAIRED COMPARISONS , 1940 .

[27]  A. Elo The rating of chessplayers, past and present , 1978 .

[28]  R A Bradley Science, statistics, and paired comparisons. , 1976, Biometrics.

[29]  Devavrat Shah,et al.  Iterative ranking from pair-wise comparisons , 2012, NIPS.

[30]  Martin J. Wainwright,et al.  Estimation from Pairwise Comparisons: Sharp Minimax Bounds with Topology Dependence , 2015, J. Mach. Learn. Res..

[31]  P. V. Rao,et al.  Ties in Paired-Comparison Experiments: A Generalization of the Bradley-Terry Model , 1967 .

[32]  C. Varin,et al.  Dynamic Bradley–Terry modelling of sports tournaments , 2013 .

[33]  Devavrat Shah,et al.  Ranking: Compare, don't score , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[34]  Nir Ailon,et al.  An Active Learning Algorithm for Ranking from Pairwise Preferences with an Almost Optimal Query Complexity , 2010, J. Mach. Learn. Res..