Shrinkage and pretest estimators for longitudinal data analysis under partially linear models

In this paper, we develop marginal analysis methods for longitudinal data under partially linear models. We employ the pretest and shrinkage estimation procedures to estimate the mean response parameters as well as the association parameters, which may be subject to certain restrictions. We provide the analytic expressions for the asymptotic biases and risks of the proposed estimators, and investigate their relative performance to the unrestricted semiparametric least-squares estimator (USLSE). We show that if the dimension of association parameters exceeds two, the risk of the shrinkage estimators is strictly less than that of the USLSE in most of the parameter space. On the other hand, the risk of the pretest estimator depends on the validity of the restrictions of association parameters. A simulation study is conducted to evaluate the performance of the proposed estimators relative to that of the USLSE. A real data example is applied to illustrate the practical usefulness of the proposed estimation procedures.

[1]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[2]  Tapabrata Maiti,et al.  Analysis of Longitudinal Data (2nd ed.) (Book) , 2004 .

[3]  Donald Hedeker,et al.  Longitudinal Data Analysis , 2006 .

[4]  Inyoung Kim,et al.  Generalised partial linear single-index mixed models for repeated measures data , 2014 .

[5]  Kani Chen,et al.  Partial Linear Regression Models for Clustered Data , 2006 .

[6]  R. Carroll,et al.  An Asymptotic Theory for Model Selection Inference in General Semiparametric Problems , 2007 .

[7]  Pranab Kumar Sen,et al.  Risk comparison of some shrinkage M-estimators in linear models , 2006 .

[8]  Peter J. Diggle,et al.  RATES OF CONVERGENCE IN SEMI‐PARAMETRIC MODELLING OF LONGITUDINAL DATA , 1994 .

[9]  Jianqing Fan,et al.  New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .

[10]  Chin-Tsang Chiang,et al.  KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .

[11]  R. Carroll,et al.  Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .

[12]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[13]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[14]  Hua Liang,et al.  Semiparametric marginal and association regression methods for clustered binary data , 2011, Annals of the Institute of Statistical Mathematics.

[15]  R. Carroll,et al.  Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data , 2005 .

[16]  P. Diggle,et al.  Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.

[17]  P. Speckman Kernel smoothing in partial linear models , 1988 .

[18]  S. Ejaz Ahmed,et al.  Absolute penalty and shrinkage estimation in partially linear models , 2012, Comput. Stat. Data Anal..

[19]  S. Ejaz Ahmed,et al.  Penalty, Shrinkage and Pretest Strategies: Variable Selection and Estimation , 2013 .

[20]  S. Ejaz Ahmed,et al.  Positive shrinkage, improved pretest and absolute penalty estimators in partially linear models , 2009 .

[21]  D. Ruppert Empirical-Bias Bandwidths for Local Polynomial Nonparametric Regression and Density Estimation , 1997 .

[22]  D. Hunter,et al.  Variable Selection using MM Algorithms. , 2005, Annals of statistics.

[23]  M. Wand,et al.  An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .

[24]  R. C. Hill,et al.  Shrinkage estimation in nonlinear regression : the Box-Cox transformation , 1995 .

[25]  K. Doksum,et al.  SHRINKAGE, PRETEST AND ABSOLUTE PENALTY ESTIMATORS IN PARTIALLY LINEAR MODELS , 2007 .

[26]  J. Lawless,et al.  Efficient Screening of Nonnormal Regression Models , 1978 .

[27]  Arjun K. Gupta,et al.  Improved Estimation in a Contingency Table: Independence Structure , 1989 .

[28]  Jianhua Z. Huang,et al.  Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data , 2014 .

[29]  P. McCullagh Quasi-Likelihood Functions , 1983 .

[30]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[31]  K. Doksum,et al.  L 1 penalty and shrinkage estimation in partially linear models with random coefficient autoregressive errors , 2012 .

[32]  Hua Liang,et al.  Analysis of correlated binary data under partially linear single-index logistic models , 2009, J. Multivar. Anal..

[33]  Runze Li,et al.  Variable selection and inference procedures for marginal analysis of longitudinal data with missing observations and covariate measurement error , 2015, The Canadian journal of statistics = Revue canadienne de statistique.