Shrinkage and pretest estimators for longitudinal data analysis under partially linear models
暂无分享,去创建一个
S. Ejaz Ahmed | Grace Y. Yi | Shakhawat Hossain | Baojiang Chen | G. Yi | B. Chen | S. Hossain | S. Ahmed
[1] Runze Li,et al. Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.
[2] Tapabrata Maiti,et al. Analysis of Longitudinal Data (2nd ed.) (Book) , 2004 .
[3] Donald Hedeker,et al. Longitudinal Data Analysis , 2006 .
[4] Inyoung Kim,et al. Generalised partial linear single-index mixed models for repeated measures data , 2014 .
[5] Kani Chen,et al. Partial Linear Regression Models for Clustered Data , 2006 .
[6] R. Carroll,et al. An Asymptotic Theory for Model Selection Inference in General Semiparametric Problems , 2007 .
[7] Pranab Kumar Sen,et al. Risk comparison of some shrinkage M-estimators in linear models , 2006 .
[8] Peter J. Diggle,et al. RATES OF CONVERGENCE IN SEMI‐PARAMETRIC MODELLING OF LONGITUDINAL DATA , 1994 .
[9] Jianqing Fan,et al. New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis , 2004 .
[10] Chin-Tsang Chiang,et al. KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .
[11] R. Carroll,et al. Semiparametric Regression for Clustered Data Using Generalized Estimating Equations , 2001 .
[12] S. Zeger,et al. Longitudinal data analysis using generalized linear models , 1986 .
[13] Jianqing Fan,et al. Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .
[14] Hua Liang,et al. Semiparametric marginal and association regression methods for clustered binary data , 2011, Annals of the Institute of Statistical Mathematics.
[15] R. Carroll,et al. Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data , 2005 .
[16] P. Diggle,et al. Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. , 1994, Biometrics.
[17] P. Speckman. Kernel smoothing in partial linear models , 1988 .
[18] S. Ejaz Ahmed,et al. Absolute penalty and shrinkage estimation in partially linear models , 2012, Comput. Stat. Data Anal..
[19] S. Ejaz Ahmed,et al. Penalty, Shrinkage and Pretest Strategies: Variable Selection and Estimation , 2013 .
[20] S. Ejaz Ahmed,et al. Positive shrinkage, improved pretest and absolute penalty estimators in partially linear models , 2009 .
[21] D. Ruppert. Empirical-Bias Bandwidths for Local Polynomial Nonparametric Regression and Density Estimation , 1997 .
[22] D. Hunter,et al. Variable Selection using MM Algorithms. , 2005, Annals of statistics.
[23] M. Wand,et al. An Effective Bandwidth Selector for Local Least Squares Regression , 1995 .
[24] R. C. Hill,et al. Shrinkage estimation in nonlinear regression : the Box-Cox transformation , 1995 .
[25] K. Doksum,et al. SHRINKAGE, PRETEST AND ABSOLUTE PENALTY ESTIMATORS IN PARTIALLY LINEAR MODELS , 2007 .
[26] J. Lawless,et al. Efficient Screening of Nonnormal Regression Models , 1978 .
[27] Arjun K. Gupta,et al. Improved Estimation in a Contingency Table: Independence Structure , 1989 .
[28] Jianhua Z. Huang,et al. Efficient semiparametric estimation in generalized partially linear additive models for longitudinal/clustered data , 2014 .
[29] P. McCullagh. Quasi-Likelihood Functions , 1983 .
[30] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[31] K. Doksum,et al. L 1 penalty and shrinkage estimation in partially linear models with random coefficient autoregressive errors , 2012 .
[32] Hua Liang,et al. Analysis of correlated binary data under partially linear single-index logistic models , 2009, J. Multivar. Anal..
[33] Runze Li,et al. Variable selection and inference procedures for marginal analysis of longitudinal data with missing observations and covariate measurement error , 2015, The Canadian journal of statistics = Revue canadienne de statistique.