On Solving Boolean Combinations of Generalized 2SAT Constraints

Abstract : We consider the satisfiability problem for Boolean combinations of generalized 2 SAT constraints, which are linear constraints with at most two, possibly unbounded, integer variables having coefficients in {-1,1}.

[1]  George B. Dantzig,et al.  Fourier-Motzkin Elimination and Its Dual , 1973, J. Comb. Theory, Ser. A.

[2]  I. Borosh,et al.  Bounds on positive integral solutions of linear Diophantine equations , 1976 .

[3]  J. Gathen,et al.  A bound on solutions of linear integer equalities and inequalities , 1978 .

[4]  Clyde L. Monma,et al.  On the Computational Complexity of Integer Programming Problems , 1978 .

[5]  Christos H. Papadimitriou,et al.  On the complexity of integer programming , 1981, JACM.

[6]  William Pugh,et al.  The Omega test: A fast and practical integer programming algorithm for dependence analysis , 1991, Proceedings of the 1991 ACM/IEEE Conference on Supercomputing (Supercomputing '91).

[7]  Joseph Naor,et al.  Tight bounds and 2-approximation algorithms for integer programs with two variables per inequality , 1993, Math. Program..

[8]  Michael J. Maher,et al.  Beyond Finite Domains , 1994, PPCP.

[9]  Joseph Naor,et al.  Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..

[10]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[11]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[12]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[14]  M. Moskewicz,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[15]  David L. Dill,et al.  Checking Satisfiability of First-Order Formulas by Incremental Translation to SAT , 2002, CAV.

[16]  David L. Dill,et al.  An Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic , 2003, TACAS.

[17]  Sanjit A. Seshia,et al.  Deciding quantifier-free Presburger formulas using parameterized solution bounds , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[18]  Shuvendu K. Lahiri,et al.  Zapato: Automatic Theorem Proving for Predicate Abstraction Refinement , 2004, CAV.

[19]  K. Subramani,et al.  On deciding the non‐emptiness of 2SAT polytopes with respect to First Order Queries , 2004, Math. Log. Q..