Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors

For the high-dimensional partially linear varying coefficient models where covariates in the nonparametric part are measured with additive errors, we, in this paper, study asymptotic distributions of a corrected empirical log-likelihood ratio function and maximum empirical likelihood estimator of the regression parameter. At the same time, based on penalized empirical likelihood (PEL) approach, the parameter estimation and variable selection of the model are investigated, the proposed PEL estimators are shown to possess the oracle property. Also, we introduce the PEL ratio statistic to test a linear hypothesis of the parameter and prove it follows an asymptotically chi-square distribution under the null hypothesis. Simulation study and real data analysis are undertaken to evaluate the finite sample performance of the proposed methods.

[1]  J. Horowitz,et al.  Asymptotic properties of bridge estimators in sparse high-dimensional regression models , 2008, 0804.0693.

[2]  Lixing Zhu,et al.  Stable direction recovery in single-index models with a diverging number of predictors , 2010 .

[3]  Liugen Xue,et al.  Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition , 2014 .

[4]  Jian Shi,et al.  Empirical Likelihood for Partially Linear Models , 2000 .

[5]  Yong Zhou,et al.  Empirical likelihood for semiparametric varying-coefficient partially linear regression models , 2006 .

[6]  Hao Helen Zhang,et al.  ON THE ADAPTIVE ELASTIC-NET WITH A DIVERGING NUMBER OF PARAMETERS. , 2009, Annals of statistics.

[7]  Anna Clara Monti Empirical likelihood confidence regions in time series models , 1997 .

[8]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[9]  Byeong U. Park,et al.  Efficient estimation for partially linear varying coefficient models when coefficient functions have different smoothing variables , 2014, J. Multivar. Anal..

[10]  Lixing Zhu,et al.  Empirical likelihood for a varying coefficient partially linear model with diverging number of parameters , 2012, J. Multivar. Anal..

[11]  Gaorong Li,et al.  Empirical likelihood inference for semi-parametric varying-coefficient partially linear EV models , 2011 .

[12]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[13]  Hua Liang,et al.  Statistical Inference for Semiparametric Varying-coefficient Partially Linear Models with Generated Regressors (F06-463). , 2009, Annals of statistics.

[14]  Chenlei Leng,et al.  Penalized high-dimensional empirical likelihood , 2010 .

[15]  Wei Long,et al.  Efficient estimation of partially linear varying coefficient models , 2013 .

[16]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[17]  T. Wu,et al.  Empirical Likelihood for Censored Linear Regression and Variable Selection , 2015, Scandinavian journal of statistics, theory and applications.

[18]  Clifford Lam,et al.  PROFILE-KERNEL LIKELIHOOD INFERENCE WITH DIVERGING NUMBER OF PARAMETERS. , 2008, Annals of statistics.

[19]  Guo-Liang Fan,et al.  Empirical likelihood for semivarying coefficient model with measurement error in the nonparametric part , 2016 .

[20]  Jinhong You,et al.  Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model , 2006 .

[21]  Runze Li,et al.  Tuning parameter selectors for the smoothly clipped absolute deviation method. , 2007, Biometrika.

[22]  Liping Zhu,et al.  On distribution‐weighted partial least squares with diverging number of highly correlated predictors , 2009 .

[23]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[24]  Chuanhua Wei,et al.  Statistical inference for restricted partially linear varying coefficient errors-in-variables models , 2012 .

[25]  Xin-Yuan Song,et al.  Local Polynomial Fitting in Semivarying Coefficient Model , 2002 .

[26]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[27]  Lexin Li,et al.  ASYMPTOTIC PROPERTIES OF SUFFICIENT DIMENSION REDUCTION WITH A DIVERGING NUMBER OF PREDICTORS. , 2011, Statistica Sinica.

[28]  Jianqing Fan,et al.  Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.

[29]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[30]  Chenlei Leng,et al.  Penalized empirical likelihood and growing dimensional general estimating equations , 2012 .

[31]  Qi Li,et al.  Semiparametric Smooth Coefficient Models , 2002 .

[32]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[33]  Guo-Liang Fan,et al.  Statistical inference for partially time-varying coefficient errors-in-variables models , 2013 .

[34]  Jianqing Fan,et al.  Profile likelihood inferences on semiparametric varying-coefficient partially linear models , 2005 .

[35]  W. Härdle,et al.  Estimation in a semiparametric partially linear errors-in-variables model , 1999 .