Structures and Mechanisms of Viral Membrane Fusion Proteins: Multiple Variations on a Common Theme

Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.

[1]  Maja Bucan,et al.  Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Wiley,et al.  Structure of unliganded HSV gD reveals a mechanism for receptor‐mediated activation of virus entry , 2005, The EMBO journal.

[3]  S. A. Gallo,et al.  The HIV Env-mediated fusion reaction. , 2003, Biochimica et biophysica acta.

[4]  C. M. Petit,et al.  Palmitoylation of the cysteine-rich endodomain of the SARS–coronavirus spike glycoprotein is important for spike-mediated cell fusion , 2006, Virology.

[5]  R. Lamb,et al.  The role of the cytoplasmic tail region of influenza virus hemagglutinin in formation and growth of fusion pores. , 1997, Virology.

[6]  G. Melikyan,et al.  The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores. , 2000, Molecular biology of the cell.

[7]  A. Agirre,et al.  Pre‐transmembrane sequence of Ebola glycoprotein , 2003, FEBS letters.

[8]  Stephen D Fuller,et al.  Cryo-Electron Tomographic Structure of an Immunodeficiency Virus Envelope Complex In Situ , 2006, PLoS pathogens.

[9]  S. Harrison,et al.  The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution , 1995, Nature.

[10]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[11]  S. Nir,et al.  The pre‐transmembrane region of the human immunodeficiency virus type‐1 glycoprotein: a novel fusogenic sequence , 2000, FEBS letters.

[12]  S. A. Gallo,et al.  HIV-1 gp41 six-helix bundle formation occurs rapidly after the engagement of gp120 by CXCR4 in the HIV-1 Env-mediated fusion process. , 2001, Biochemistry.

[13]  S. Crennell,et al.  Crystal structure of the multifunctional paramyxovirus hemagglutinin-neuraminidase , 2001, Nature Structural Biology.

[14]  J. Moore,et al.  Human Immunodeficiency Virus Type 1 Env with an Intersubunit Disulfide Bond Engages Coreceptors but Requires Bond Reduction after Engagement To Induce Fusion , 2003, Journal of Virology.

[15]  P. Kwong Human immunodeficiency virus: Refolding the envelope , 2005, Nature.

[16]  J. Haas,et al.  Identification of Two Sequences in the Cytoplasmic Tail of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein That Inhibit Cell Surface Expression , 2001, Journal of Virology.

[17]  John A. Young,et al.  The hr1 and Fusion Peptide Regions of the Subgroup B Avian Sarcoma and Leukosis Virus Envelope Glycoprotein Influence Low pH-Dependent Membrane Fusion , 2007, PloS one.

[18]  G. Melikyan,et al.  Role of the Cytoplasmic Tail of Ecotropic Moloney Murine Leukemia Virus Env Protein in Fusion Pore Formation , 2000, Journal of Virology.

[19]  J. White,et al.  The Many Mechanisms of Viral Membrane Fusion Proteins , 2005, Current topics in microbiology and immunology.

[20]  H. Katinger,et al.  Exposure of the membrane-proximal external region of HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion. , 2007, Biochemistry.

[21]  D. Kabat,et al.  Kinetic Factors Control Efficiencies of Cell Entry, Efficacies of Entry Inhibitors, and Mechanisms of Adaptation of Human Immunodeficiency Virus , 2005, Journal of Virology.

[22]  John P. Moore,et al.  Ternary Complex Formation of Human Immunodeficiency Virus Type 1 Env, CD4, and Chemokine Receptor Captured as an Intermediate of Membrane Fusion , 2005, Journal of Virology.

[23]  R. Garry,et al.  Theoretical Biology and Medical Modelling Open Access Proteomics Computational Analyses Suggest That the Carboxyl Terminal Glycoproteins of Bunyaviruses Are Class Ii Viral Fusion Protein (beta-penetrenes) Viral Fusion Proteinsbunyavirus Envelope Glycoproteinsproteomics Computational Analysesglycopro , 2022 .

[24]  Michael M. Kozlov,et al.  Membrane Hemifusion: Crossing a Chasm in Two Leaps , 2005, Cell.

[25]  Anna K Bellamy-McIntyre,et al.  Functional Links between the Fusion Peptide-proximal Polar Segment and Membrane-proximal Region of Human Immunodeficiency Virus gp41 in Distinct Phases of Membrane Fusion* , 2007, Journal of Biological Chemistry.

[26]  F. Rey,et al.  Virus membrane-fusion proteins: more than one way to make a hairpin , 2006, Nature Reviews Microbiology.

[27]  G. Neumann,et al.  Proteolytic Processing of the Ebola Virus Glycoprotein Is Not Critical for Ebola Virus Replication in Nonhuman Primates , 2007, Journal of Virology.

[28]  A. Lai,et al.  Fusion Peptide of Influenza Hemagglutinin Requires a Fixed Angle Boomerang Structure for Activity* , 2006, Journal of Biological Chemistry.

[29]  Stacy E. Smith,et al.  Characterization of Human Metapneumovirus F Protein-Promoted Membrane Fusion: Critical Roles for Proteolytic Processing and Low pH , 2006, Journal of Virology.

[30]  Eric Hunter,et al.  Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry , 1998, Nature Medicine.

[31]  E. Freed,et al.  Regulation of Human Immunodeficiency Virus Type 1 Env-Mediated Membrane Fusion by Viral Protease Activity , 2004, Journal of Virology.

[32]  V. Misra,et al.  Proteolytic cleavage of bovine herpesvirus 1 (BHV-1) glycoprotein gB is not necessary for its function in BHV-1 or pseudorabies virus , 1994, Journal of virology.

[33]  J. Hoxie,et al.  Regulation of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Fusion by a Membrane-Interactive Domain in the gp41 Cytoplasmic Tail , 2005, Journal of Virology.

[34]  L. Chernomordik,et al.  The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. , 2006, Developmental cell.

[35]  R. Lamb,et al.  Structural studies of the parainfluenza virus 5 hemagglutinin-neuraminidase tetramer in complex with its receptor, sialyllactose. , 2005, Structure.

[36]  J. Skehel,et al.  Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity , 1992, Cell.

[37]  J. Lineberger,et al.  Coupling of Human Immunodeficiency Virus Type 1 Fusion to Virion Maturation: a Novel Role of the gp41 Cytoplasmic Tail , 2004, Journal of Virology.

[38]  G. Melikyan,et al.  Completion of trimeric hairpin formation of influenza virus hemagglutinin promotes fusion pore opening and enlargement. , 2003, Virology.

[39]  R. Lamb Paramyxovirus fusion: a hypothesis for changes. , 1993, Virology.

[40]  M. Roth,et al.  A point mutation in the transmembrane domain of the hemagglutinin of influenza virus stabilizes a hemifusion intermediate that can transit to fusion. , 2000, Molecular biology of the cell.

[41]  E. Pécheur,et al.  Lipids as modulators of membrane fusion mediated by viral fusion proteins , 2007, European Biophysics Journal.

[42]  H. Park,et al.  Leash in the groove mechanism of membrane fusion , 2003, Nature Structural Biology.

[43]  Y. Shai,et al.  Fusion Peptides Derived from the HIV Type 1 Glycoprotein 41 Associate within Phospholipid Membranes and Inhibit Cell-Cell Fusion , 1997, The Journal of Biological Chemistry.

[44]  J. Lifson,et al.  Distribution and three-dimensional structure of AIDS virus envelope spikes , 2006, Nature.

[45]  M. Palmarini,et al.  In vivo tumorigenesis by Jaagsiekte sheep retrovirus (JSRV) requires Y590 in Env TM, but not full-length orfX open reading frame. , 2007, Virology.

[46]  F. S. Cohen,et al.  Single event recording shows that docking onto receptor alters the kinetics of membrane fusion mediated by influenza hemagglutinin. , 1993, Biophysical journal.

[47]  Wenhui Li,et al.  Conformational States of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein Ectodomain , 2006, Journal of Virology.

[48]  J. Franks,et al.  A Point Mutation in the Binding Subunit of a Retroviral Envelope Protein Arrests Virus Entry at Hemifusion , 2004, Journal of Virology.

[49]  R. Geraghty,et al.  Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B , 2007, Proceedings of the National Academy of Sciences.

[50]  P. Bates,et al.  Endoproteolytic Processing of the Ebola Virus Envelope Glycoprotein: Cleavage Is Not Required for Function , 1999, Journal of Virology.

[51]  P. Bates,et al.  The Avian Retrovirus Avian Sarcoma/Leukosis Virus Subtype A Reaches the Lipid Mixing Stage of Fusion at Neutral pH , 2003, Journal of Virology.

[52]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[53]  S. Delos,et al.  Cysteines Flanking the Internal Fusion Peptide Are Required for the Avian Sarcoma/Leukosis Virus Glycoprotein To Mediate the Lipid Mixing Stage of Fusion with High Efficiency , 2008, Journal of Virology.

[54]  D. Opstelten,et al.  Moloney Murine Leukemia Virus Envelope Protein Subunits, gp70 and Pr15E, Form a Stable Disulfide-Linked Complex , 1998, Journal of Virology.

[55]  B. Dobberstein,et al.  Signal Peptide Requirements for Lymphocytic Choriomeningitis Virus Glycoprotein C Maturation and Virus Infectivity , 2007, Journal of Virology.

[56]  R. Lamb,et al.  Influenza Virus Hemagglutinin (H3 Subtype) Requires Palmitoylation of Its Cytoplasmic Tail for Assembly: M1 Proteins of Two Subtypes Differ in Their Ability To Support Assembly , 2005, Journal of Virology.

[57]  Bostjan Kobe,et al.  The Role of histidine residues in low-pH-mediated viral membrane fusion. , 2006, Structure.

[58]  M. Kozlov,et al.  The Protein Coat in Membrane Fusion: Lessons from Fission , 2002, Traffic.

[59]  R. Lamb,et al.  Roles for the Cytoplasmic Tails of the Fusion and Hemagglutinin-Neuraminidase Proteins in Budding of the Paramyxovirus Simian Virus 5 , 2002, Journal of Virology.

[60]  M. Kozlov,et al.  Membranes of the world unite! , 2006, The Journal of cell biology.

[61]  J. Lepault,et al.  Conformational change and protein–protein interactions of the fusion protein of Semliki Forest virus , 2004, Nature.

[62]  J. Young,et al.  Imaging individual retroviral fusion events: from hemifusion to pore formation and growth. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  M. Almeida,et al.  Structure of the Ebola Fusion Peptide in a Membrane-mimetic Environment and the Interaction with Lipid Rafts* , 2007, Journal of Biological Chemistry.

[64]  H. Lipkin Where is the ?c? , 1978 .

[65]  D. A. Sanders,et al.  Structural criteria for regulation of membrane fusion and virion incorporation by the murine leukemia virus TM cytoplasmic domain. , 2003, Virology.

[66]  W. Wimley,et al.  The aromatic domain of the coronavirus class I viral fusion protein induces membrane permeabilization: putative role during viral entry. , 2005, Biochemistry.

[67]  R. Dutch,et al.  A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L , 2006, Virology.

[68]  R. Lamb,et al.  Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation , 2006, Nature.

[69]  L. Tamm Hypothesis: spring-loaded boomerang mechanism of influenza hemagglutinin-mediated membrane fusion. , 2003, Biochimica et biophysica acta.

[70]  R. Plemper,et al.  Strength of Envelope Protein Interaction Modulates Cytopathicity of Measles Virus , 2002, Journal of Virology.

[71]  Y. Kawaoka,et al.  Detection of Cell-Cell Fusion Mediated by Ebola Virus Glycoproteins , 2006, Journal of Virology.

[72]  R. Eisenberg,et al.  Glycoprotein D Receptor-Dependent, Low-pH-Independent Endocytic Entry of Herpes Simplex Virus Type 1 , 2005, Journal of Virology.

[73]  G. Simmons,et al.  Proteolysis of the Ebola Virus Glycoproteins Enhances Virus Binding and Infectivity , 2007, Journal of Virology.

[74]  A. Herrmann,et al.  Modification of the Cytoplasmic Domain of Influenza Virus Hemagglutinin Affects Enlargement of the Fusion Pore , 2000, Journal of Virology.

[75]  R. Dutch,et al.  Cathepsin L Is Involved in Proteolytic Processing of the Hendra Virus Fusion Protein , 2005, Journal of Virology.

[76]  T. Sakai,et al.  Tight Binding of Influenza Virus Hemagglutinin to Its Receptor Interferes with Fusion Pore Dilation , 2002, Journal of Virology.

[77]  R. Lamb,et al.  Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins. , 2007, Virology.

[78]  Klaus Radsak Dispensable for Viral Growth in Culture Cytomegalovirus Glycoprotein B Is Proteolytic Processing of Human , 2001 .

[79]  C. Russell,et al.  The structural basis of paramyxovirus invasion , 2006, Trends in Microbiology.

[80]  R. Lamb,et al.  A core trimer of the paramyxovirus fusion protein: parallels to influenza virus hemagglutinin and HIV-1 gp41. , 1998, Virology.

[81]  H. Drummer,et al.  Recent Advances in Our Understanding of Receptor Binding, Viral Fusion and Cell Entry of Hepatitis C Virus: New Targets for the Design of Antiviral Agents , 2007, Antiviral chemistry & chemotherapy.

[82]  Oscar A. Negrete,et al.  N-Glycans on Nipah Virus Fusion Protein Protect against Neutralization but Reduce Membrane Fusion and Viral Entry , 2006, Journal of Virology.

[83]  R. Eisenberg,et al.  Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion , 2007, Proceedings of the National Academy of Sciences.

[84]  I. Wilson,et al.  Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin , 1987, The Journal of cell biology.

[85]  A. Rocha,et al.  Conformation- and Fusion-Defective Mutations in the Hypothetical Phospholipid-Binding and Fusion Peptides of Viral Hemorrhagic Septicemia Salmonid Rhabdovirus Protein G , 2004, Journal of Virology.

[86]  M. Whitt,et al.  Fatty acid acylation is not required for membrane fusion activity or glycoprotein assembly into VSV virions. , 1991, Virology.

[87]  Kenneth A. Matreyek,et al.  Polybasic KKR Motif in the Cytoplasmic Tail of Nipah Virus Fusion Protein Modulates Membrane Fusion by Inside-Out Signaling , 2007, Journal of Virology.

[88]  Scott F Michael,et al.  Peptide inhibitors of dengue virus and West Nile virus infectivity , 2005, Virology Journal.

[89]  D. Gibbons,et al.  Multistep Regulation of Membrane Insertion of the Fusion Peptide of Semliki Forest Virus , 2004, Journal of Virology.

[90]  A. Falanga,et al.  Evidence for a Role of the Membrane‐Proximal Region of Herpes Simplex Virus Type 1 Glycoprotein H in Membrane Fusion and Virus Inhibition , 2007, Chembiochem : a European journal of chemical biology.

[91]  J. Ruysschaert,et al.  Common Properties of Fusion Peptides from Diverse Systems , 2000, Bioscience reports.

[92]  M. Lawrence,et al.  Structure of the haemagglutinin-neuraminidase from human parainfluenza virus type III. , 2004, Journal of molecular biology.

[93]  S. Matsuyama,et al.  Sequential Roles of Receptor Binding and Low pH in Forming Prehairpin and Hairpin Conformations of a Retroviral Envelope Glycoprotein , 2004, Journal of Virology.

[94]  Shibo Jiang,et al.  HIV entry inhibitors targeting gp41: from polypeptides to small-molecule compounds. , 2007, Current pharmaceutical design.

[95]  R. Eisenberg,et al.  Mutational Evidence of Internal Fusion Loops in Herpes Simplex Virus Glycoprotein B , 2007, Journal of Virology.

[96]  D. Agard,et al.  Activation of a Retroviral Membrane Fusion Protein: Soluble Receptor-induced Liposome Binding of the ALSV Envelope Glycoprotein , 1997, The Journal of cell biology.

[97]  F. Heinz,et al.  Membrane fusion activity of tick-borne encephalitis virus and recombinant subviral particles in a liposomal model system. , 2000, Virology.

[98]  Amalio Telenti,et al.  HIV entry inhibitors , 2007, The Lancet.

[99]  H. Vogel,et al.  The membrane-proximal tryptophan-rich region of the HIV glycoprotein, gp41, forms a well-defined helix in dodecylphosphocholine micelles. , 2001, Biochemistry.

[100]  F. Goñi,et al.  Phosphatidylinositol-Dependent Membrane Fusion Induced by a Putative Fusogenic Sequence of Ebola Virus , 1998, Journal of Virology.

[101]  Three membrane-proximal amino acids in the human parainfluenza type 2 (HPIV 2) F protein are critical for fusogenic activity. , 2001, Virology.

[102]  A. Nicola,et al.  Roles for Endocytosis and Low pH in Herpes Simplex Virus Entry into HeLa and Chinese Hamster Ovary Cells , 2003, Journal of Virology.

[103]  H. Garoff,et al.  The conserved His8 of the Moloney murine leukemia virus Env SU subunit directs the activity of the SU-TM disulphide bond isomerase. , 2007, Virology.

[104]  Don C. Wiley,et al.  Structure of an unliganded simian immunodeficiency virus gp120 core , 2005, Nature.

[105]  L. Xing,et al.  The Dynamic Envelope of a Fusion Class II Virus , 2007, Journal of Biological Chemistry.

[106]  R. Lamb,et al.  Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[107]  J. White,et al.  Critical Role for the Cysteines Flanking the Internal Fusion Peptide of Avian Sarcoma/Leukosis Virus Envelope Glycoprotein , 2000, Journal of Virology.

[108]  A. Ulrich,et al.  A critical evaluation of the conformational requirements of fusogenic peptides in membranes , 2007, European Biophysics Journal.

[109]  F. Taguchi,et al.  Receptor-Induced Conformational Changes of Murine Coronavirus Spike Protein , 2002, Journal of Virology.

[110]  F. Guirakhoo,et al.  A single M protein mutation affects the acid inactivation threshold and growth kinetics of a chimeric flavivirus. , 2007, Virology.

[111]  D. Gibbons,et al.  The Fusion Peptide of Semliki Forest Virus Associates with Sterol-Rich Membrane Domains , 2002, Journal of Virology.

[112]  C. Russell,et al.  Spring-Loaded Heptad Repeat Residues Regulate the Expression and Activation of Paramyxovirus Fusion Protein , 2007, Journal of Virology.

[113]  L. Tamm,et al.  Structure and plasticity of the human immunodeficiency virus gp41 fusion domain in lipid micelles and bilayers. , 2007, Biophysical journal.

[114]  J. Skehel,et al.  H1 and H7 influenza haemagglutinin structures extend a structural classification of haemagglutinin subtypes. , 2004, Virology.

[115]  D. A. Sanders,et al.  Localization of the labile disulfide bond between SU and TM of the murine leukemia virus envelope protein complex to a highly conserved CWLC motif in SU that resembles the active-site sequence of thiol-disulfide exchange enzymes , 1997, Journal of virology.

[116]  F. Goñi,et al.  Interaction of the HIV-1 fusion peptide with phospholipid vesicles: different structural requirements for fusion and leakage. , 1994, Biochemistry.

[117]  J. Smit,et al.  Deacylation of the transmembrane domains of Sindbis virus envelope glycoproteins E1 and E2 does not affect low‐pH‐induced viral membrane fusion activity , 2001, FEBS letters.

[118]  J W DUGGAN,et al.  Herpes simplex virus. , 1961, Transactions of the Canadian Ophthalmological Society.

[119]  I. Jones,et al.  Cell entry by enveloped viruses: redox considerations for HIV and SARS-coronavirus. , 2007, Antioxidants & redox signaling.

[120]  S. Whelan,et al.  Endosomal Proteolysis of the Ebola Virus Glycoprotein Is Necessary for Infection , 2005, Science.

[121]  Shinji Watanabe,et al.  Reverse Genetics Demonstrates that Proteolytic Processing of the Ebola Virus Glycoprotein Is Not Essential for Replication in Cell Culture , 2002, Journal of Virology.

[122]  E. Freed,et al.  The cell biology of HIV-1 and other retroviruses , 2006, Retrovirology.

[123]  E. Hunter,et al.  Mutations within the proteolytic cleavage site of the Rous sarcoma virus glycoprotein that block processing to gp85 and gp37 , 1987, Journal of virology.

[124]  Brent J. Ryckman,et al.  Human Cytomegalovirus Entry into Epithelial and Endothelial Cells Depends on Genes UL128 to UL150 and Occurs by Endocytosis and Low-pH Fusion , 2006, Journal of Virology.

[125]  H. Klenk,et al.  Acylation-Mediated Membrane Anchoring of Avian Influenza Virus Hemagglutinin Is Essential for Fusion Pore Formation and Virus Infectivity , 2005, Journal of Virology.

[126]  S. Harrison,et al.  Atomic structure of the ectodomain from HIV-1 gp41 , 1997, Nature.

[127]  Peter D. Kwong,et al.  Structures of the CCR5 N Terminus and of a Tyrosine-Sulfated Antibody with HIV-1 gp120 and CD4 , 2007, Science.

[128]  R. Compans,et al.  Oligomerization, secretion, and biological function of an anchor-free parainfluenza virus type 2 (PI2) fusion protein. , 2000, Virology.

[129]  N. Greenfield,et al.  VSV transmembrane domain (TMD) peptide promotes PEG-mediated fusion of liposomes in a conformationally sensitive fashion. , 2002, Biochemistry.

[130]  E. Hunter,et al.  A Conserved Tryptophan-Rich Motif in the Membrane-Proximal Region of the Human Immunodeficiency Virus Type 1 gp41 Ectodomain Is Important for Env-Mediated Fusion and Virus Infectivity , 1999, Journal of Virology.

[131]  S. A. Gallo,et al.  Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion , 2006, Retrovirology.

[132]  R. Weiss,et al.  The pH independence of mammalian retrovirus infection. , 1990, The Journal of general virology.

[133]  R. Center,et al.  Functional Implications of the Human T-Lymphotropic Virus Type 1 Transmembrane Glycoprotein Helical Hairpin Structure , 2000, Journal of Virology.

[134]  C. Weiss,et al.  Capture of an early fusion-active conformation of HIV-1 gp41 , 1998, Nature Structural Biology.

[135]  M. Bruns,et al.  Entry of Duck Hepatitis B Virus into Primary Duck Liver and Kidney Cells after Discovery of a Fusogenic Region within the Large Surface Protein , 2007, Journal of Virology.

[136]  A. Lai,et al.  Locking the Kink in the Influenza Hemagglutinin Fusion Domain Structure* , 2007, Journal of Biological Chemistry.

[137]  A. Touhami,et al.  The p14 Fusion-associated Small Transmembrane (FAST) Protein Effects Membrane Fusion from a Subset of Membrane Microdomains* , 2006, Journal of Biological Chemistry.

[138]  Ian A. Wilson,et al.  Structure of the Uncleaved Human H1 Hemagglutinin from the Extinct 1918 Influenza Virus , 2004, Science.

[139]  T. Jardetzky,et al.  Hydrophobic Residues That Form Putative Fusion Loops of Epstein-Barr Virus Glycoprotein B Are Critical for Fusion Activity , 2007, Journal of Virology.

[140]  G. Melikyan,et al.  HIV-1 envelope proteins complete their folding into six-helix bundles immediately after fusion pore formation. , 2003, Molecular biology of the cell.

[141]  H. Klenk,et al.  Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. , 2007, The Journal of general virology.

[142]  A. Zurbriggen,et al.  Signal Peptide and Helical Bundle Domains of Virulent Canine Distemper Virus Fusion Protein Restrict Fusogenicity , 2007, Journal of Virology.

[143]  S D Fuller,et al.  Molecular organization of a recombinant subviral particle from tick-borne encephalitis virus. , 2001, Molecular cell.

[144]  J. Binley,et al.  The Cytoplasmic Tail Slows the Folding of Human Immunodeficiency Virus Type 1 Env from a Late Prebundle Configuration into the Six-Helix Bundle , 2005, Journal of Virology.

[145]  Surojit Sarkar,et al.  Antibody Neutralization Escape Mediated by Point Mutations in the Intracytoplasmic Tail of Human Immunodeficiency Virus Type 1 gp41 , 2005, Journal of Virology.

[146]  J. Skehel,et al.  N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[147]  W. DeGrado,et al.  Phospholipid interactions of synthetic peptides representing the N-terminus of HIV gp41. , 1990, Biochemistry.

[148]  S. Roche,et al.  Crystal Structure of the Low-pH Form of the Vesicular Stomatitis Virus Glycoprotein G , 2006, Science.

[149]  K. Stiasny,et al.  Structure of a flavivirus envelope glycoprotein in its low‐pH‐induced membrane fusion conformation , 2004, The EMBO journal.

[150]  S. Harrison,et al.  Crystal Structure of Glycoprotein B from Herpes Simplex Virus 1 , 2006, Science.

[151]  Vanessa R. Melanson,et al.  Amino Acid Substitutions in the F-Specific Domain in the Stalk of the Newcastle Disease Virus HN Protein Modulate Fusion and Interfere with Its Interaction with the F Protein , 2004, Journal of Virology.

[152]  Nga Nguyen,et al.  Peptides Trap the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Fusion Intermediate at Two Sites , 2003, Journal of Virology.

[153]  R. Longnecker,et al.  Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[154]  B. Moss,et al.  Association of Vaccinia Virus Fusion Regulatory Proteins with the Multicomponent Entry/Fusion Complex , 2007, Journal of Virology.

[155]  David Barlam,et al.  A stiffness switch in human immunodeficiency virus. , 2007, Biophysical journal.

[156]  Y. Lazebnik,et al.  Cell-to-cell fusion as a link between viruses and cancer , 2007, Nature Reviews Cancer.

[157]  D. Weliky,et al.  Conformational flexibility and strand arrangements of the membrane-associated HIV fusion peptide trimer probed by solid-state NMR spectroscopy. , 2006, Biochemistry.

[158]  I. Wilson,et al.  Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin , 1992, Journal of virology.

[159]  R. Lamb,et al.  Membrane fusion machines of paramyxoviruses: capture of intermediates of fusion , 2001, The EMBO journal.

[160]  J. Cladera,et al.  Effect of cholesterol on the interaction of the HIV GP41 fusion peptide with model membranes. Importance of the membrane dipole potential. , 2006, Biochemistry.

[161]  D. Sanders,et al.  Sulfhydryl involvement in fusion mechanisms. , 2000, Sub-cellular biochemistry.

[162]  D. Beniac,et al.  Conformational Reorganization of the SARS Coronavirus Spike Following Receptor Binding: Implications for Membrane Fusion , 2007, PloS one.

[163]  R. Bittman,et al.  Sphingolipid and Cholesterol Dependence of Alphavirus Membrane Fusion , 2002, The Journal of Biological Chemistry.

[164]  J. Franks,et al.  Host Cell Cathepsins Potentiate Moloney Murine Leukemia Virus Infection , 2007, Journal of Virology.

[165]  S. Weiss,et al.  Conformational Changes in the Spike Glycoprotein of Murine Coronavirus Are Induced at 37°C either by Soluble Murine CEACAM1 Receptors or by pH 8 , 2003, Journal of Virology.

[166]  S. Durell,et al.  Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events , 1996, The Journal of cell biology.

[167]  P. Spear,et al.  Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry. , 2006, Virology.

[168]  J. Skehel,et al.  Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion. , 2008, Virology.

[169]  L. Albritton,et al.  The Membrane-Proximal Domain of Vesicular Stomatitis Virus G Protein Functions as a Membrane Fusion Potentiator and Can Induce Hemifusion , 2002, Journal of Virology.

[170]  T. Morrison Structure and function of a paramyxovirus fusion protein. , 2003, Biochimica et biophysica acta.

[171]  S. Pelletier,et al.  Specific Single or Double Proline Substitutions in the “Spring-loaded” Coiled-Coil Region of the Influenza Hemagglutinin Impair or Abolish Membrane Fusion Activity , 1998, The Journal of cell biology.

[172]  P. Spear,et al.  Random linker-insertion mutagenesis to identify functional domains of herpes simplex virus type 1 glycoprotein B , 2007, Proceedings of the National Academy of Sciences.

[173]  Y. Gaudin Reversibility in fusion protein conformational changes. The intriguing case of rhabdovirus-induced membrane fusion. , 2000, Sub-cellular biochemistry.

[174]  S. Durell,et al.  What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). , 1997, Molecular membrane biology.

[175]  F. Penin,et al.  Characterization of Fusion Determinants Points to the Involvement of Three Discrete Regions of Both E1 and E2 Glycoproteins in the Membrane Fusion Process of Hepatitis C Virus , 2007, Journal of Virology.

[176]  R. Lamb,et al.  Refolding of a paramyxovirus F protein from prefusion to postfusion conformations observed by liposome binding and electron microscopy , 2006, Proceedings of the National Academy of Sciences.

[177]  P. S. Rachakonda,et al.  The relevance of salt bridges for the stability of the influenza virus hemagglutinin , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[178]  D. Andreu,et al.  Membrane-transferring sequences of the HIV-1 Gp41 ectodomain assemble into an immunogenic complex. , 2006, Journal of molecular biology.

[179]  P. Bates,et al.  Heptad Repeat 2-Based Peptides Inhibit Avian Sarcoma and Leukosis Virus Subgroup A Infection and Identify a Fusion Intermediate , 2004, Journal of Virology.

[180]  R. Lamb,et al.  Deletion of the Cytoplasmic Tail of the Fusion Protein of the Paramyxovirus Simian Virus 5 Affects Fusion Pore Enlargement , 2001, Journal of Virology.

[181]  R. Lamb,et al.  Analysis of the pH Requirement for Membrane Fusion of Different Isolates of the Paramyxovirus Parainfluenza Virus 5 , 2006, Journal of Virology.

[182]  S. Pöhlmann,et al.  Cellular entry of HIV: Evaluation of therapeutic targets. , 2006, Current pharmaceutical design.

[183]  S. Weiss,et al.  Endosomal Proteolysis by Cathepsins Is Necessary for Murine Coronavirus Mouse Hepatitis Virus Type 2 Spike-Mediated Entry , 2006, Journal of Virology.

[184]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[185]  E. Freed,et al.  Site-specific Mutations in HIV-1 gp41 Reveal a Correlation between HIV-1-mediated Bystander Apoptosis and Fusion/Hemifusion* , 2007, Journal of Biological Chemistry.

[186]  H. Browne,et al.  The Transmembrane Domain and Cytoplasmic Tail of Herpes Simplex Virus Type 1 Glycoprotein H Play a Role in Membrane Fusion , 2002, Journal of Virology.

[187]  H. Katinger,et al.  Specific phospholipid recognition by human immunodeficiency virus type‐1 neutralizing anti‐gp41 2F5 antibody , 2006, FEBS letters.

[188]  J. White,et al.  The Central Proline of an Internal Viral Fusion Peptide Serves Two Important Roles , 2000, Journal of Virology.

[189]  A. Sanchez,et al.  Covalent Modifications of the Ebola Virus Glycoprotein , 2002, Journal of Virology.

[190]  S. Pelletier,et al.  Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers , 1996, The Journal of cell biology.

[191]  B. Neuman,et al.  Mapping the Landscape of the Lymphocytic Choriomeningitis Virus Stable Signal Peptide Reveals Novel Functional Domains , 2007, Journal of Virology.

[192]  P. Spear,et al.  Different receptors binding to distinct interfaces on herpes simplex virus gD can trigger events leading to cell fusion and viral entry. , 2006, Virology.

[193]  Lukas K. Tamm,et al.  Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin , 2001, Nature Structural Biology.

[194]  A. Maerz,et al.  Functional Analysis of the Disulfide-Bonded Loop/Chain Reversal Region of Human Immunodeficiency Virus Type 1 gp41 Reveals a Critical Role in gp120-gp41 Association , 2001, Journal of Virology.

[195]  L. Hernandez,et al.  Mutational Analysis of the Candidate Internal Fusion Peptide of the Avian Leukosis and Sarcoma Virus Subgroup A Envelope Glycoprotein , 1998, Journal of Virology.

[196]  S. A. Gallo,et al.  Mode of Action of an Antiviral Peptide from HIV-1 , 2001, The Journal of Biological Chemistry.

[197]  T. Pietschmann,et al.  An Evolutionarily Conserved Positively Charged Amino Acid in the Putative Membrane-Spanning Domain of the Foamy Virus Envelope Protein Controls Fusion Activity , 2000, Journal of Virology.

[198]  J. Wands,et al.  Glycine Decarboxylase Mediates a Postbinding Step in Duck Hepatitis B Virus Infection , 2004, Journal of Virology.

[199]  Lukas K. Tamm,et al.  Membrane Structures of the Hemifusion-Inducing Fusion Peptide Mutant G1S and theFusion-Blocking Mutant G1V of Influenza Virus HemagglutininSuggest a Mechanism for Pore Opening in MembraneFusion , 2005, Journal of Virology.

[200]  J. White,et al.  Fusion of Rous sarcoma virus with host cells does not require exposure to low pH , 1990, Journal of virology.

[201]  C. M. Gabrys,et al.  Chemical shift assignment and structural plasticity of a HIV fusion peptide derivative in dodecylphosphocholine micelles. , 2007, Biochimica et biophysica acta.

[202]  F S Cohen,et al.  A specific point mutant at position 1 of the influenza hemagglutinin fusion peptide displays a hemifusion phenotype. , 1999, Molecular biology of the cell.

[203]  H. Garoff,et al.  The Fusion-Controlling Disulfide Bond Isomerase in Retrovirus Env Is Triggered by Protein Destabilization , 2005, Journal of Virology.

[204]  A. Herrmann,et al.  Role of Endocytosis and Low pH in Murine Hepatitis Virus Strain A59 Cell Entry , 2007, Journal of Virology.

[205]  R. Dutch,et al.  A conserved region between the heptad repeats of paramyxovirus fusion proteins is critical for proper F protein folding. , 2007, Biochemistry.

[206]  S D Fuller,et al.  Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. , 2000, Molecular cell.

[207]  J. Chin,et al.  The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. , 2007, Microbes and infection.

[208]  Kathryn L. Schornberg,et al.  Role of Endosomal Cathepsins in Entry Mediated by the Ebola Virus Glycoprotein , 2006, Journal of Virology.

[209]  H. Garoff,et al.  Kinetic Analyses of the Surface-Transmembrane Disulfide Bond Isomerization-Controlled Fusion Activation Pathway in Moloney Murine Leukemia Virus , 2005, Journal of Virology.

[210]  M. Kielian Class II virus membrane fusion proteins. , 2006, Virology.

[211]  R. Hodges,et al.  Dissection of the Fusion Machine of Sars-Coronavirus , 2006, Advances in experimental medicine and biology.

[212]  S. S. Chen,et al.  Cellular Membrane-Binding Ability of the C-Terminal Cytoplasmic Domain of Human Immunodeficiency Virus Type 1 Envelope Transmembrane Protein gp41 , 2001, Journal of Virology.

[213]  R. Schooley,et al.  Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion , 2006, Proceedings of the National Academy of Sciences.

[214]  J. Sodroski,et al.  Stoichiometry of Envelope Glycoprotein Trimers in the Entry of Human Immunodeficiency Virus Type 1 , 2005, Journal of Virology.

[215]  S. Harrison Mechanism of Membrane Fusion by Viral Envelope Proteins , 2005, Advances in Virus Research.

[216]  R. Doms,et al.  The entry of entry inhibitors: A fusion of science and medicine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[217]  Shibo Jiang,et al.  Discovery and Optimization of a Natural HIV-1 Entry Inhibitor Targeting the gp41 Fusion Peptide , 2007, Cell.

[218]  G. Whittaker,et al.  The Avian Coronavirus Infectious Bronchitis Virus Undergoes Direct Low-pH-Dependent Fusion Activation during Entry into Host Cells , 2006, Journal of Virology.

[219]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[220]  Cheng-Wei Wu,et al.  Structure and membrane interaction of the internal fusion peptide of avian sarcoma leukosis virus. , 2004, European journal of biochemistry.

[221]  J. Snyder,et al.  Functional Interaction between Paramyxovirus Fusion and Attachment Proteins* , 2008, Journal of Biological Chemistry.

[222]  R. Compans,et al.  Palmitoylation of the murine leukemia virus envelope glycoprotein transmembrane subunits. , 1996, Virology.

[223]  Mark Marsh,et al.  Virus Entry: Open Sesame , 2006, Cell.

[224]  G. Melikyan,et al.  The Energetics of Membrane Fusion from Binding, through Hemifusion, Pore Formation, and Pore Enlargement , 2004, The Journal of Membrane Biology.

[225]  H. Garoff,et al.  The Dynamic Envelope of a Fusion Class II Virus , 2006, Journal of Biological Chemistry.

[226]  A. Nicola,et al.  Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells , 2006, Virology Journal.

[227]  M. Whitt,et al.  The Membrane-Proximal Region of Vesicular Stomatitis Virus Glycoprotein G Ectodomain Is Critical for Fusion and Virus Infectivity , 2003, Journal of Virology.

[228]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[229]  S. White,et al.  Protein folding in membranes: determining energetics of peptide-bilayer interactions. , 1998, Methods in enzymology.

[230]  R. Lamb,et al.  Structural basis of viral invasion: lessons from paramyxovirus F. , 2007, Current opinion in structural biology.

[231]  R. Brasseur,et al.  Orientation and structure of the NH2-terminal HIV-1 gp41 peptide in fused and aggregated liposomes. , 1993, Biochimica et biophysica acta.

[232]  R. Lamb,et al.  Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity , 1996, Journal of Virology.

[233]  A. Bax,et al.  Structure and dynamics of micelle-associated human immunodeficiency virus gp41 fusion domain. , 2005, Biochemistry.

[234]  J. Rose,et al.  Mutations in the membrane-spanning domain of the human immunodeficiency virus envelope glycoprotein that affect fusion activity , 1994, Journal of virology.

[235]  R. Dutch,et al.  A Conserved Region in the F2 Subunit of Paramyxovirus Fusion Proteins Is Involved In Fusion Regulation , 2007, Journal of Virology.

[236]  Winfried Weissenhorn,et al.  Virus membrane fusion , 2007, FEBS Letters.

[237]  R. Bittman,et al.  Sphingolipids activate membrane fusion of Semliki Forest virus in a stereospecific manner. , 1995, Biochemistry.

[238]  G. Taylor,et al.  Second Sialic Acid Binding Site in Newcastle Disease Virus Hemagglutinin-Neuraminidase: Implications for Fusion , 2004, Journal of Virology.

[239]  D. Stolz,et al.  Equine Herpesvirus 1 Enters Cells by Two Different Pathways, and Infection Requires the Activation of the Cellular Kinase ROCK1 , 2007, Journal of Virology.

[240]  H. Garoff,et al.  Receptor-Triggered but Alkylation-Arrested Env of Murine Leukemia Virus Reveals the Transmembrane Subunit in a Prehairpin Conformation , 2006, Journal of Virology.

[241]  P S Kim,et al.  Mechanisms of viral membrane fusion and its inhibition. , 2001, Annual review of biochemistry.

[242]  D. Z. Cleverley,et al.  The transmembrane domain in viral fusion: essential role for a conserved glycine residue in vesicular stomatitis virus G protein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[243]  R. Damico,et al.  Receptor-triggered membrane association of a model retroviral glycoprotein. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[244]  M. Pistello,et al.  The membrane-proximal tryptophan-rich region in the transmembrane glycoprotein ectodomain of feline immunodeficiency virus is important for cell entry. , 2004, Virology.

[245]  J. White,et al.  GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes , 1995, The Journal of cell biology.

[246]  R. Compans,et al.  Activation of Fusion by the SER Virus F Protein: a Low-pH-Dependent Paramyxovirus Entry Process , 2003, Journal of Virology.

[247]  K. Stiasny,et al.  Flavivirus membrane fusion. , 2006, The Journal of general virology.

[248]  R. Eisenberg,et al.  Stable Association of Herpes Simplex Virus with Target Membranes Is Triggered by Low pH in the Presence of the gD Receptor, HVEM , 2006, Journal of Virology.

[249]  G. Melikyan,et al.  Evidence That the Transition of HIV-1 Gp41 into a Six-Helix Bundle, Not the Bundle Configuration, Induces Membrane Fusion , 2000, The Journal of cell biology.

[250]  M. Liao,et al.  Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion , 2005, The Journal of cell biology.

[251]  S. Roche,et al.  Structure of the Prefusion Form of the Vesicular Stomatitis Virus Glycoprotein G , 2007, Science.

[252]  J. Young,et al.  Low pH Is Required for Avian Sarcoma and Leukosis Virus Env-Induced Hemifusion and Fusion Pore Formation but Not for Pore Growth , 2004, Journal of Virology.

[253]  M. Kielian,et al.  A Conserved Histidine in the ij Loop of the Semliki Forest Virus E1 Protein Plays an Important Role in Membrane Fusion , 2004, Journal of Virology.

[254]  E. Hunter,et al.  Mutations within the Putative Membrane-Spanning Domain of the Simian Immunodeficiency Virus Transmembrane Glycoprotein Define the Minimal Requirements for Fusion, Incorporation, and Infectivity , 2001, Journal of Virology.

[255]  M. Fornabaio,et al.  A Second Receptor Binding Site on Human Parainfluenza Virus Type 3 Hemagglutinin-Neuraminidase Contributes to Activation of the FusionMechanism , 2007, Journal of Virology.

[256]  J. Cunningham,et al.  Retroviral Entry Mediated by Receptor Priming and Low pH Triggering of an Envelope Glycoprotein , 2000, Cell.

[257]  G. Whittaker,et al.  Viral entry. , 2005, Current topics in microbiology and immunology.

[258]  F. Rey Molecular gymnastics at the herpesvirus surface , 2006, EMBO reports.

[259]  M. Esteban,et al.  Membrane cell fusion activity of the vaccinia virus A17–A27 protein complex , 2007, Cellular microbiology.

[260]  K. Stiasny,et al.  Involvement of Lipids in Different Steps of the Flavivirus Fusion Mechanism , 2003, Journal of Virology.

[261]  S. Urban,et al.  Viral and cellular determinants involved in hepadnaviral entry. , 2007, World journal of gastroenterology.

[262]  T. Sakai,et al.  Fatty Acids on the A/USSR/77 Influenza Virus Hemagglutinin Facilitate the Transition from Hemifusion to Fusion Pore Formation , 2002, Journal of Virology.

[263]  D. A. Sanders,et al.  The role of the membrane-spanning domain sequence in glycoprotein-mediated membrane fusion. , 1999, Molecular biology of the cell.

[264]  I. Mingarro,et al.  Roles of a conserved proline in the internal fusion peptide of Ebola glycoprotein , 2004, FEBS letters.

[265]  E. Corey,et al.  Mutations in the Stalk of the Measles Virus Hemagglutinin Protein Decrease Fusion but Do Not Interfere with Virus-Specific Interaction with the Homologous Fusion Protein , 2007, Journal of Virology.

[266]  J. Skehel,et al.  Deacylation of the hemagglutinin of influenza A/Aichi/2/68 has no effect on membrane fusion properties. , 1991, Virology.

[267]  J. Young,et al.  Two Retroviral Entry Pathways Distinguished by Lipid Raft Association of the Viral Receptor and Differences in Viral Infectivity , 2003, Journal of Virology.

[268]  J. Navaza,et al.  The Fusion Glycoprotein Shell of Semliki Forest Virus An Icosahedral Assembly Primed for Fusogenic Activation at Endosomal pH , 2001, Cell.

[269]  H. Garoff,et al.  Isomerization of the intersubunit disulphide‐bond in Env controls retrovirus fusion , 2004, The EMBO journal.

[270]  Peter D. Kwong,et al.  Structure and Mechanistic Analysis of the Anti-Human Immunodeficiency Virus Type 1 Antibody 2F5 in Complex with Its gp41 Epitope , 2004, Journal of Virology.

[271]  E. Freed,et al.  HIV-1 escape from the entry-inhibiting effects of a cholesterol-binding compound via cleavage of gp41 by the viral protease , 2007, Proceedings of the National Academy of Sciences.

[272]  Michael S. Kay,et al.  Potent D-peptide inhibitors of HIV-1 entry , 2007, Proceedings of the National Academy of Sciences.

[273]  J. York,et al.  Role of the Stable Signal Peptide of Junín Arenavirus Envelope Glycoprotein in pH-Dependent Membrane Fusion , 2006, Journal of Virology.

[274]  M. Sitbon,et al.  A Proline-Rich Motif Downstream of the Receptor Binding Domain Modulates Conformation and Fusogenicity of Murine Retroviral Envelopes , 1998, Journal of Virology.

[275]  A. Sanchez,et al.  Mutational Analysis of the Putative Fusion Domain of Ebola Virus Glycoprotein , 1999, Journal of Virology.

[276]  Makoto Ujike,et al.  Influence of Acylation Sites of Influenza B Virus Hemagglutinin on Fusion Pore Formation and Dilation , 2004, Journal of Virology.

[277]  S. Blacklow,et al.  The Mature Avian Leukosis Virus Subgroup A Envelope Glycoprotein Is Metastable, and Refolding Induced by the Synergistic Effects of Receptor Binding and Low pH Is Coupled to Infection , 2004, Journal of Virology.

[278]  J. Lepault,et al.  Characterization of a Membrane-Associated Trimeric Low-pH-Induced Form of the Class II Viral Fusion Protein E from Tick-Borne Encephalitis Virus and Its Crystallization , 2004, Journal of Virology.

[279]  Larissa B. Thackray,et al.  Aromatic Amino Acids in the Juxtamembrane Domain of Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein Are Important for Receptor-Dependent Virus Entry and Cell-Cell Fusion , 2008, Journal of Virology.

[280]  D. Kabat,et al.  An allosteric rheostat in HIV-1 gp120 reduces CCR5 stoichiometry required for membrane fusion and overcomes diverse entry limitations. , 2007, Journal of molecular biology.

[281]  P. Bates,et al.  Characterization of Ebola Virus Entry by Using Pseudotyped Viruses: Identification of Receptor-Deficient Cell Lines , 1998, Journal of Virology.

[282]  A. Sanchez,et al.  A system for functional analysis of Ebola virus glycoprotein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[283]  E. Hunter,et al.  Progressive Truncations C Terminal to the Membrane-Spanning Domain of Simian Immunodeficiency Virus Env Reduce Fusogenicity and Increase Concentration Dependence of Env for Fusion , 2003, Journal of Virology.

[284]  S. Morikawa,et al.  Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[285]  R. T. Armstrong,et al.  The Transmembrane Domain of Influenza Hemagglutinin Exhibits a Stringent Length Requirement to Support the Hemifusion to Fusion Transition , 2000, The Journal of cell biology.

[286]  Deborah Fass,et al.  Core Structure of gp41 from the HIV Envelope Glycoprotein , 1997, Cell.

[287]  A. Thomas,et al.  Distribution of Hydrophobic Residues Is Crucial for the Fusogenic Properties of the Ebola Virus GP2 Fusion Peptide , 2004, Journal of Virology.

[288]  G. Lewis,et al.  Antigenic Properties of the Human Immunodeficiency Virus Envelope during Cell-Cell Fusion , 2001, Journal of Virology.

[289]  R. Blumenthal,et al.  Role of the Membrane-Proximal Domain in the Initial Stages of Human Immunodeficiency Virus Type 1 Envelope Glycoprotein-Mediated Membrane Fusion , 1999, Journal of Virology.

[290]  V. Brusic,et al.  HIV-1 broadly neutralizing antibody extracts its epitope from a kinked gp41 ectodomain region on the viral membrane. , 2008, Immunity.

[291]  S. Peisajovich,et al.  Sendai virus N-terminal fusion peptide consists of two similar repeats, both of which contribute to membrane fusion. , 2002, European journal of biochemistry.

[292]  G. Whittaker,et al.  Molecular Architecture of the Bipartite Fusion Loops of Vesicular Stomatitis Virus Glycoprotein G, a Class III Viral Fusion Protein* , 2008, Journal of Biological Chemistry.

[293]  Judith M. White,et al.  Receptor-Induced Conformational Changes in the SU Subunit of the Avian Sarcoma/Leukosis Virus A Envelope Protein: Implications for Fusion Activation , 2005, Journal of Virology.

[294]  S. Diamond,et al.  Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[295]  R. Chernish,et al.  Effects of double-site mutations of vesicular stomatitis virus glycoprotein G on membrane fusion activity. , 1999, Virology.

[296]  L. Hernandez,et al.  Receptor-induced conformational changes in the subgroup A avian leukosis and sarcoma virus envelope glycoprotein , 1995, Journal of virology.

[297]  Woan-Eng Chan,et al.  Wild-Type-Like Viral Replication Potential of Human Immunodeficiency Virus Type 1 Envelope Mutants Lacking Palmitoylation Signals , 2005, Journal of Virology.

[298]  Judith M. White,et al.  Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion , 1994, Cell.

[299]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[300]  K. E. Follis,et al.  Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell–cell fusion but does not affect virion entry , 2006, Virology.