Origin of Particle Clustering in a Simulated Polymer Nanocomposite and its Impact on Rheology

Many nanoparticles have short-range interactions relative to their size, and these interactions tend to be “patchy” since the interatomic spacing is comparable to the nanoparticle size. For a dispersion of such particles, it is not a priori obvious what mechanism will control the clustering of the nanoparticles, and how the clustering will be affected by tuning various control parameters. To gain insight into these questions, we perform molecular dynamics simulations of polyhedral nanoparticles in a dense bead–spring polymer melt under both quiescent and steady shear conditions. We explore the mechanism that controls nanoparticle clustering and find that the crossover from dispersed to clustered states is consistent with the predictions for equilibrium particle association or equilibrium polymerization, and that the crossover does not appear to match the expectations for first-order phase separation typical for binary mixtures in the region of the phase diagram where we can equilibrate the system. At the ...

[1]  P. Mele,et al.  A Molecular dynamics study of a model nanoparticle embedded in a polymer matrix , 2003 .

[2]  S. C. Greer Reversible polymerizations and aggregations. , 2003, Annual review of physical chemistry.

[3]  D. Bedrov,et al.  A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites , 2002 .

[4]  J. Sengers,et al.  Thermodynamic properties of mixtures of H2O and D2O in the critical region , 2002 .

[5]  D. Gersappe Molecular mechanisms of failure in polymer nanocomposites. , 2002, Physical review letters.

[6]  R. Vaia,et al.  Polymer Nanocomposites: Status and Opportunities , 2001 .

[7]  M. Vacatello Monte Carlo Simulations of Polymer Melts Filled with Solid Nanoparticles , 2001 .

[8]  S. Glotzer,et al.  Effects of a nanoscopic filler on the structure and dynamics of a simulated polymer melt and the relationship to ultrathin films. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  T. Cosgrove,et al.  Diffusion of poly(dimethylsiloxane) mixtures with silicate nanoparticles , 2001 .

[10]  W. Burchard,et al.  Light Scattering and Viscosity Behavior of Dextran in Semidilute Solution , 2001 .

[11]  P. Teixeira,et al.  REVIEW ARTICLE: The effect of dipolar forces on the structure and thermodynamics of classical fluids , 2000 .

[12]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[13]  A. Balazs,et al.  Theoretical Phase Diagrams of Polymer/Clay Composites: The Role of Grafted Organic Modifiers , 2000 .

[14]  J. Dudowicz,et al.  Lattice model of living polymerization. II. Interplay between polymerization and phase stability , 2000 .

[15]  S. Nguyen,et al.  Redox-active polymer-nanoparticle hybrid materials , 2000 .

[16]  R. Williams,et al.  Nanotechnology Research Directions: IWGN Workshop Report , 2000 .

[17]  Jack F. Douglas,et al.  Model for the Viscosity of Particle Dispersions , 1999 .

[18]  Mihail C. Roco,et al.  Nanotechnology Research Directions: IWGN Workshop Report. Vision for Nanotechnology R&D in the Next Decade , 1999 .

[19]  G. Benedek,et al.  Aeolotopic interactions of globular proteins. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  G. Wypych Handbook of Fillers , 1999 .

[21]  H. Lekkerkerker Strong, weak and metastable liquids , 1997 .

[22]  F. Feher,et al.  Cross-metathesis of alkenes with vinyl-substituted silsesquioxanes and spherosilicates: a new method for synthesizing highly-functionalized Si/O frameworks , 1997 .

[23]  H. D. Cochran,et al.  Multiple time step nonequilibrium molecular dynamics simulation of the rheological properties of liquid n-decane , 1996 .

[24]  Juan J. de Pablo,et al.  Transport properties of polymer melts from nonequilibrium molecular dynamics , 1995 .

[25]  R. Larson Molecular simulation of ordered amphiphilic phases , 1994 .

[26]  Benjamin Chu,et al.  Solution behavior of buckminsterfullerene (C60) in benzene , 1994 .

[27]  Di Tolla FD,et al.  Applicability of Nosé isothermal reversible dynamics. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  D. Frenkel,et al.  Does C60 have a liquid phase? , 1993, Nature.

[29]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[30]  H. Eugene Stanley,et al.  Network defects and molecular mobility in liquid water , 1992 .

[31]  G. Benedek,et al.  Solid-liquid phase boundaries of lens protein solutions. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[32]  O. Webster Living Polymerization Methods , 1991, Science.

[33]  Peter T. Cummings,et al.  The contribution of internal degrees of freedom to the non-Newtonian rheology of model polymer fluids , 1991 .

[34]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[35]  Kurt Binder,et al.  Theory of first-order phase transitions , 1987 .

[36]  Robert C. Armstrong,et al.  Dynamics of polymeric liquids: Kinetic theory , 1987 .

[37]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[38]  J. Israelachvili Intermolecular and surface forces , 1985 .

[39]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[40]  C. Tanford Macromolecules , 1994, Nature.