Dynamics of noninvertibility in delay equations

Models with a time delay often occur, since there is a naturally occurring delay in the transmission of information. A model with a delay can be noninvertible, which in turn leads to qualitative di erences between the dynamical properties of a delay equation and the familiar case of an ordinary di erential equation. We give speci c conditions for the existence of noninvertible solutions in delay equations, and describe the consequences of noninvertibility.

[1]  Evelyn Sander,et al.  The structure of synchronization sets for noninvertible systems. , 2004, Chaos.

[2]  Evelyn Sander,et al.  The geometry of chaos synchronization. , 2003, Chaos.

[3]  Ioannis G. Kevrekidis,et al.  A route to computational chaos revisited: noninvertibility and the breakup of an invariant circle , 2003, math/0301301.

[4]  N F Rulkov,et al.  Generalized synchronization of chaos in noninvertible maps. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Steven J Schiff,et al.  Limits to the experimental detection of nonlinear synchrony. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Bruce J. Gluckman,et al.  The breakdown of Synchronization in Systems of Nonidentical Chaotic oscillators: Theory and Experiment , 2001, Int. J. Bifurc. Chaos.

[7]  J Bélair,et al.  Regulation of platelet production: the normal response to perturbation and cyclical platelet disease. , 2000, Journal of theoretical biology.

[8]  M. C. Mackey,et al.  Modeling complex neutrophil dynamics in the grey collie. , 2000, Journal of theoretical biology.

[9]  S J Schiff,et al.  From generalized synchrony to topological decoherence: emergent sets in coupled chaotic systems. , 1999, Physical review letters.

[10]  M. C. Mackey,et al.  Hematopoietic dynamics in grey collies. , 1999, Experimental hematology.

[11]  B. Lani-Wayda Erratic solutions of simple delay equations , 1999 .

[12]  Evelyn Sander,et al.  Hyperbolic sets for noninvertible maps and relations , 1999 .

[13]  M. C. Mackey,et al.  Cyclical neutropenia and the peripheral control of white blood cell production. , 1998, Journal of theoretical biology.

[14]  J Bélair,et al.  Hematopoietic model with moving boundary condition and state dependent delay: applications in erythropoiesis. , 1998, Journal of theoretical biology.

[15]  T. H,et al.  Cyclical Neutropenia and the Peripheral Control of White Blood Cell Production , 1998 .

[16]  Christian Mira,et al.  On Some Properties of Invariant Sets of Two-Dimensional Noninvertible Maps , 1997 .

[17]  Alan F. Murray,et al.  IEEE International Conference on Neural Networks , 1997 .

[18]  G. Sell,et al.  THE POINCARE-BENDIXSON THEOREM FOR MONOTONE CYCLIC FEEDBACK SYSTEMS WITH DELAY , 1996 .

[19]  G. Sell,et al.  Systems of Differential Delay Equations: Floquet Multipliers and Discrete Lyapunov Functions , 1996 .

[20]  Raymond A. Adomaitis,et al.  An experimental and computational study of subcriticality, hysteresis and global dynamics for a model adaptive control system , 1996 .

[21]  Michael C. Mackey,et al.  8. MATHEMATICAL MODELS OF HEMATOPOIETIC CELL REPLICATION AND CONTROL , 1996 .

[22]  Bernhard Lani-Wayda Hyperbolic Sets, Shadowing and Persistence for Noninvertible Mappings in Banach Spaces , 1995 .

[23]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[24]  Persistence of Poincaré mappings in functional differential equations (with application to structural stability of complicated behavior) , 1995 .

[25]  T. Aida,et al.  Oscillation mode selection using bifurcation of chaotic mode transitions in a nonlinear ring resonator , 1994 .

[26]  Raymond A. Adomaitis,et al.  Noninvertibility in neural networks , 1993, IEEE International Conference on Neural Networks.

[27]  Raymond A. Adomaitis,et al.  The Structure of Basin Boundaries in a Simple Adaptive Control System , 1992 .

[28]  Raymond A. Adomaitis,et al.  Noninvertibility and the structure of basins of attraction in a model adaptive control system , 1991 .

[29]  Hans-Otto Walther,et al.  Hyperbolic sets, transversal homoclinic trajectories, and symbolic dynamics for C1-maps in banach spaces , 1990 .

[30]  M C Mackey,et al.  Periodic Haematological Diseases: Mystical Entities or Dynamical Disorders? , 1989, Journal of the Royal College of Physicians of London.

[31]  Edward N. Lorenz,et al.  Computational chaos-a prelude to computational instability , 1989 .

[32]  Michael C. Mackey,et al.  From Clocks to Chaos , 1988 .

[33]  D. Shannon,et al.  Periodic breathing: Quantitative analysis and clinical description , 1988, Pediatric pulmonology.

[34]  K. Ikeda,et al.  High-dimensional chaotic behavior in systems with time-delayed feedback , 1987 .

[35]  Jack K. Hale,et al.  Symbolic dynamics and nonlinear semiflows , 1986 .

[36]  Jack K. Hale,et al.  Heteroclinic Orbits for Retarded Functional Differential Equations , 1986 .

[37]  Examples of transverse homoclinic orbits in delay equations , 1986 .

[38]  M. Tobin,et al.  Cheyne‐Stokes respiration revisited: Controversies and implications , 1984, Critical care medicine.

[39]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[40]  Annali DI Matematica,et al.  Annali di Matematica pura ed applicata , 1892 .