The role of dielectric permittivity in the energy storage performances of ultrahigh-permittivity (Sr x Ba 1−x )(Ti 0.85 Sn 0.15 )O 3 ceramics

[1]  M. Lanagan,et al.  Thermal annealing effects on the energy storage properties of BST ceramics , 2017 .

[2]  Jingfeng Li,et al.  Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance , 2017, Advanced materials.

[3]  H. Fan,et al.  Large nonlinear dielectric behavior in BaTi1−xSnxO3 , 2017, Scientific Reports.

[4]  Fei Yan,et al.  A lead free relaxation and high energy storage efficiency ceramics for energy storage applications , 2017 .

[5]  Hanxing Liu,et al.  Microstructure and dielectric properties of SrTiO3 ceramics by controlled growth of silica shells on SrTiO3 nanoparticles , 2017 .

[6]  M. Lanagan,et al.  Homogeneous/Inhomogeneous‐Structured Dielectrics and their Energy‐Storage Performances , 2017, Advanced materials.

[7]  Mouteng Yao,et al.  Enhanced energy storage density of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3 with MgO addition , 2017 .

[8]  Hanxing Liu,et al.  Improved energy-storage performance and breakdown enhancement mechanism of Mg-doped SrTiO3 bulk ceramics for high energy density capacitor applications , 2017, Journal of Materials Science: Materials in Electronics.

[9]  X. Chen,et al.  Enhanced energy storage properties of barium strontium titanate ceramics prepared by sol-gel method and spark plasma sintering , 2017 .

[10]  Shufeng Li,et al.  Energy storage density and tunable dielectric properties of BaTi0.85Sn0.15O3/MgO composite ceramics prepared by SPS , 2017 .

[11]  X. Ren,et al.  Enhancing dielectric permittivity for energy-storage devices through tricritical phenomenon , 2017, Scientific Reports.

[12]  Jun Pei,et al.  Phase structure and electrical properties of Sn and Zr modified BaTiO3 lead-free ceramics , 2017 .

[13]  Weifeng Zhang,et al.  Influence of oxygen pressure on microstructure and dielectric properties of lead-free BaTi0.85Sn0.15O3 thin films prepared by pulsed laser deposition , 2016 .

[14]  Guohua Chen,et al.  Dielectric characterization and energy-storage performance of lead-free niobate glass–ceramics added with La2O3 , 2016 .

[15]  J. Dai,et al.  Ferroelectric phase transition and spontaneous electric polarization in CaMn7O12 from first principles , 2015 .

[16]  M. Lanagan,et al.  Improved Energy Storage Properties Accompanied by Enhanced Interface Polarization in Annealed Microwave‐Sintered BST , 2015 .

[17]  T. Jackson,et al.  Flexible high-temperature dielectric materials from polymer nanocomposites , 2015, Nature.

[18]  Chao Chen,et al.  Highly enhanced dielectric strength and energy storage density in hydantoin@BaTiO3–P(VDF-HFP) composites with a sandwich-structure , 2015 .

[19]  X. Chen,et al.  Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering , 2015 .

[20]  Hanxing Liu,et al.  The effect of grain boundary on the energy storage properties of (Ba0.4Sr0.6M)TiO3 paraelectric ceramics by varying grain sizes , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[21]  D. Viehland,et al.  Magnetoelectric quasi-(0-3) nanocomposite heterostructures , 2015, Nature Communications.

[22]  Guohua Chen,et al.  Effect of crystallization temperature on the dielectric property and energy density of SrO–BaO–Nb2O6–B2O3 glass–ceramics , 2015 .

[23]  Hanxing Liu,et al.  Effects of Ca doping on the energy storage properties of (Sr, Ca)TiO3 paraelectric ceramics , 2015, Journal of Materials Science: Materials in Electronics.

[24]  J. Zhai,et al.  Structure and dielectric properties of BaxSr1−xTiO3-based glass ceramics for energy storage , 2014 .

[25]  J. Zhai,et al.  Enhanced dielectric and energy storage density induced by surface-modified BaTiO3 nanofibers in poly(vinylidene fluoride) nanocomposites , 2014 .

[26]  Hanxing Liu,et al.  Dielectric relaxation behavior and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives , 2014 .

[27]  Xihong Hao,et al.  Enhanced energy-storage performances of Bi2O3–Li2O added (1−x)(Na0.5Bi0.5) TiO3–xBaTiO3 thick films , 2014 .

[28]  Guohua Chen,et al.  Crystallization kinetics and temperature dependence of energy storage properties of niobate glass-ceramics , 2014 .

[29]  A. Tagantsev,et al.  Ferroelectric translational antiphase boundaries in nonpolar materials , 2014, Nature Communications.

[30]  B. Ma,et al.  Relaxor behavior and energy storage performance of ferroelectric PLZT thin films with different Zr/Ti ratios , 2014 .

[31]  Hanxing Liu,et al.  Effects of Sr/Ti ratio on the microstructure and energy storage properties of nonstoichiometric SrTiO3 ceramics , 2014 .

[32]  J. Zhai,et al.  Crystallization and Properties of Strontium Barium Niobate-Based Glass–Ceramics for Energy-Storage Applications , 2014, Journal of Electronic Materials.

[33]  Q. Liao,et al.  Preparation and dielectric properties of BaCu(B2O5)-doped SrTiO3-based ceramics for energy storage , 2013 .

[34]  Yang Shen,et al.  Highly enhanced energy density induced by hetero-interface in sandwich-structured polymer nanocomposites , 2013 .

[35]  Xihong Hao,et al.  Large enhancement of energy-storage properties of compositional graded (Pb 1-x La x )(Zr 0.65 Ti 0.35 )O 3 relaxor ferroelectric thick films , 2013 .

[36]  S. Wu,et al.  High dielectric strength and energy storage density in Ba6−3xLn8+2xTi18O54 (Ln = La, Sm) low-loss dielectric ceramics , 2013, Journal of Materials Science: Materials in Electronics.

[37]  Xihong Hao,et al.  preparation and energy-storage performance of plzt antiferroelectric thick films via sol-gel method , 2013 .

[38]  Yuanliang Li,et al.  Dielectric properties and phase transition of samarium-doped BaSn0.1Ti0.9O3 ceramics , 2013 .

[39]  Haixiong Tang,et al.  Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. , 2013, Nano letters.

[40]  Venkata Sreenivas Puli,et al.  Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT–BCT ceramic capacitors , 2013 .

[41]  Hong Wang,et al.  Enhanced dielectric properties of BaTiO3/poly(vinylidene fluoride) nanocomposites for energy storage applications , 2013 .

[42]  Q. Zhang,et al.  Variation of DC Breakdown Strength with Phase Transition Temperature in (Ba1-xSrx)TiO3 Ceramics , 2013 .

[43]  Lisa A. Fredin,et al.  Enhanced Energy Storage and Suppressed Dielectric Loss in Oxide Core–Shell–Polyolefin Nanocomposites by Moderating Internal Surface Area and Increasing Shell Thickness , 2012, Advanced materials.

[44]  D. Viehland,et al.  Controlled growth of epitaxial BiFeO3 films using self-assembled BiFeO3-CoFe2O4 multiferroic heterostructures as a template , 2012 .

[45]  Zhuo Xu,et al.  Electrical energy density and dielectric properties of poly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3 nanocomposites , 2012 .

[46]  Venkata Sreenivas Puli,et al.  Barium zirconate-titanate/barium calcium-titanate ceramics via sol–gel process: novel high-energy-density capacitors , 2011, Journal of Physics D: Applied Physics.

[47]  Qin Chen,et al.  Recent development of high energy density polymers for dielectric capacitors , 2010, IEEE Transactions on Dielectrics and Electrical Insulation.

[48]  D. Uskoković,et al.  Electrical properties of barium titanate stannate functionally graded materials , 2010 .

[49]  Jun Du,et al.  Improved Energy Storage Density in Barium Strontium Titanate by Addition of BaO-SiO2-B2O3 Glass , 2009 .

[50]  Michael T. Lanagan,et al.  Alkali-free glass as a high energy density dielectric material , 2009 .

[51]  Zhicheng Zhang,et al.  Energy storage study of ferroelectric poly(vinylidene fluoride-trifluoroethylene- chlorotrifluoroethylene) terpolymers , 2009 .

[52]  Sang Il Seok,et al.  Electrical Energy Storage in Ferroelectric Polymer Nanocomposites Containing Surface-Functionalized BaTiO3 Nanoparticles , 2008 .

[53]  M. Steigerwald,et al.  Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. , 2008, Journal of the American Chemical Society.

[54]  J. Chu,et al.  Analysis of diffuse phase transition and relaxorlike behaviors in Pb0.5Sr0.5TiO3 films through dc electric-field dependence of dielectric response , 2007 .

[55]  H. Kozuka,et al.  Preparation of Ba(Ti,Sn)O3 thin films by PVP-assisted sol–gel method and their dielectric properties , 2007 .

[56]  M. Mitrić,et al.  Preparation and properties of BaTi1- xSnxO3 multilayered ceramics , 2007 .

[57]  Hongwei Chen,et al.  Model for dielectric nonlinearity of ferroelectrics , 2005 .

[58]  Zhengkui Xu,et al.  Tunability and relaxor properties of ferroelectric barium stannate titanate ceramics , 2004 .

[59]  H. Chan,et al.  Diffuse phase transition and dielectric tunability of Ba(ZryTi1−y)O3 relaxor ferroelectric ceramics , 2004 .

[60]  C. Ang,et al.  dc electric-field dependence of the dielectric constant in polar dielectrics: Multipolarization mechanism model , 2004 .

[61]  S. Sen,et al.  Novel technique for synthesis and characterization of nanosized Ba1-xSrxSn0.15Ti0.85O3 ceramics , 2004 .

[62]  X. Yao,et al.  Dielectric properties of barium stannate titanate ceramics under bias field , 2004 .

[63]  George A. Samara,et al.  TOPICAL REVIEW: The relaxational properties of compositionally disordered ABO3 perovskites , 2003 .

[64]  X. Jiao,et al.  Low temperature synthesis of SrxBa1−xTiO3 (x=0.0–0.2) powders , 2002 .

[65]  N. Yasuda,et al.  Dielectric Properties and Phase Transitions of Ba(Ti1-xSnx)O3 Solid Solution , 1996 .

[66]  Leslie E. Cross,et al.  THE EXTRINSIC NATURE OF NONLINEAR BEHAVIOR OBSERVED IN LEAD ZIRCONATE TITANATE FERROELECTRIC CERAMIC , 1991 .