Critical examination of the supermolecule density functional theory calculations of intermolecular interactions.

The results of calculations employing twelve different combinations of exchange and correlation functionals are compared with results of ab initio calculations for two different configurations of the water dimer and three different configurations of the thymine-adenine complex. None of the density functional theory (DFT) treatments could properly reproduce the results of coupled-cluster calculations for all configurations examined. The DFT approaches perform well when the interaction energy is dominated by the electrostatic component and the dispersion energy is less important. Two mechanisms that compensate for the missing dispersion component were identified. The first one is the decrease of the magnitude of the intermolecular exchange-repulsion and the second one is the increase of the magnitude of the attractive deformation energy. For some functionals both effects are observed together, but for some other ones only the second effect occurs. The three correlation functionals that were examined were found to make only very small contributions to the deformation energy. The examination of angular and distance dependence of the interactions shows that the currently available DFT approaches are not suitable for developing intermolecular potential energy surfaces. They could however be used to find global minima on potential energy surfaces governed by intermolecular electrostatic interactions. Additional single point ab initio calculations are recommended as the means of validating optimized structures.

[1]  Ernest R. Davidson,et al.  THE TRANSITION METAL-CARBONYL BOND , 1993 .

[2]  Vincenzo Barone,et al.  Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models , 1998 .

[3]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[4]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[5]  J. Šponer,et al.  Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation , 1996 .

[6]  P. Hobza,et al.  Interaction Energies of Hydrogen-Bonded Formamide Dimer, Formamidine Dimer, and Selected DNA Base Pairs Obtained with Large Basis Sets of Atomic Orbitals , 2000 .

[7]  Tomasz A. Wesol owski Comment on “Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density-functional calculations?” [J. Chem. Phys. 111, 7727 (1999)] , 2000 .

[8]  S. M. Cybulski,et al.  An interaction energy decomposition approach for the supermolecule density functional theory calculations , 2003 .

[9]  M. Ľożyński,et al.  Hydrogen Bonding and Density Functional Calculations: The B3LYP Approach as the Shortest Way to MP2 Results , 1998 .

[10]  Juan J. Novoa,et al.  Evaluation of the Density Functional Approximation on the Computation of Hydrogen Bond Interactions , 1995 .

[11]  Hans Peter Lüthi,et al.  Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model , 2001 .

[12]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[13]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[14]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[15]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[16]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[17]  Ernest R. Davidson,et al.  Comment on ``Comment on Dunning's correlation-consistent basis sets'' , 1996 .

[18]  K. Szalewicz,et al.  Dispersion Energy in the Coupled Pair Approximation with Noniterative Inclusion of Single and Triple Excitations , 1995 .

[19]  David J. Tozer,et al.  Helium dimer dispersion forces and correlation potentials in density functional theory. , 2002 .

[20]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[21]  Stanley K. Burt,et al.  Can contemporary density functional theory yield accurate thermodynamics for hydrogen bonding , 1995 .

[22]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[23]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[24]  Dennis R. Salahub,et al.  Gaussian density functional calculations on hydrogen-bonded systems , 1992 .

[25]  Célia Fonseca Guerra,et al.  The Nature of the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance , 1999 .

[26]  Sławomir M. Cybulski,et al.  An analysis of the interactions between nucleic acid bases: Hydrogen-bonded base pairs , 2003 .

[27]  Robert Moszynski,et al.  On decomposition of second‐order Mo/ller–Plesset supermolecular interaction energy and basis set effects , 1990 .

[28]  G. Frenking,et al.  Towards a rigorously defined quantum chemical analysis of the chemical bond in donor–acceptor complexes☆ , 2003 .

[29]  Sławomir M. Cybulski,et al.  Comment on “Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory treatment” [J. Chem. Phys. 114, 5149 (2001)] , 2002 .

[30]  Tatiana Korona,et al.  Anisotropic intermolecular interactions in van der Waals and hydrogen-bonded complexes: What can we get from density functional calculations? , 1999 .

[31]  E. Baerends,et al.  Central Bond in the Three CN• Dimers NC–CN, CN–CN and CN–NC: Electron Pair Bonding and Pauli Repulsion Effects , 1992 .

[32]  J. G. Snijders,et al.  Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment , 2000 .

[33]  M. Szczęśniak,et al.  On the connection between the supermolecular Møller-Plesset treatment of the interaction energy and the perturbation theory of intermolecular forces , 1988 .