Structural Characterization of AgI–AgPO3–Ag2WO4 Superionic Conducting Glasses by Advanced Solid-State NMR Techniques

Glass samples of composition 40AgI–(60–x)AgPO3–xAg2WO4 (0 ≤ x ≤ 25 mol %) have been prepared by the conventional melt-quenching method. These glasses receive renewed interest due to their ionic conductivity and transparency in the visible range. Because the physical and optical properties of these glasses are highly dependent on composition in this system, a comprehensive structural study has been carried out using Raman spectroscopy and 1D and 2D NMR of the 31P and 109Ag nuclei. With increasing Ag2WO4 content, the network is modified from a 1D Q(2)-like chain structure to a topology in which Q(1) and Q(0) species linked to octahedrally coordinated tungsten species dominate. This structural transformation increases the glass rigidity and stability against hydrolysis reactions. The compositional evolution of the phosphate speciation (in terms of Q(n)mW units) is consistent with maximum tungstate dispersion in glasses with x ≤ 10, while for glasses with higher tungstate content the data are more consistent ...

[1]  Y. Messaddeq,et al.  Effect of Ag2WO4 on the electrical and optical properties of AgI-AgPO3 glasses and fibers for electrophysiology applications , 2017 .

[2]  Y. Messaddeq,et al.  An experimental study of the effect of AgI on the optical and electrical properties of conductive glasses in the system AgI-AgPO3-WO3 , 2017 .

[3]  J. Knowles,et al.  Dissolution and drug release profiles of phosphate glasses doped with high valency oxides , 2016, Journal of Materials Science: Materials in Medicine.

[4]  S. Gupta,et al.  Doping-Induced Room Temperature Stabilization of Metastable β-Ag2WO4 and Origin of Visible Emission in α- and β-Ag2WO4: Low Temperature Photoluminescence Studies , 2016 .

[5]  Pablo S. Lemos,et al.  Synthesis and characterization of metastable β-Ag2WO4: an experimental and theoretical approach. , 2016, Dalton transactions.

[6]  A. Argyros,et al.  Hybrid Optical Fibers – An Innovative Platform for In‐Fiber Photonic Devices , 2016 .

[7]  A. Manshina,et al.  Structural features of silver-doped phosphate glasses in zone of femtosecond laser-induced modification , 2015 .

[8]  L. Denoroy,et al.  Why Optogenetics Needs in Vivo Neurochemistry. , 2015, ACS chemical neuroscience.

[9]  J. Nowiński,et al.  High and low temperature syntheses of AgI–AgPO3 glasses: Structural and thermal studies , 2015 .

[10]  Yannick Ledemi,et al.  Optically-transparent and electrically-conductive AgI–AgPO3–WO3 glass fibers , 2015 .

[11]  Christina M. Tringides,et al.  Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo , 2015, Nature Biotechnology.

[12]  H. Eckert,et al.  Anion Distribution in Superionic Ag3PO4–AgI Glasses Revealed by Dipolar Solid-State NMR , 2013 .

[13]  A. Chandra,et al.  Ion Conduction in Superionic Glassy Electrolytes: An Overview , 2013 .

[14]  S. Ribeiro,et al.  Structural studies of AgPO3–MoO3 glasses using solid state NMR and vibrational spectroscopies , 2012 .

[15]  E. Longo,et al.  Presence of excited electronic state in CaWO4 crystals provoked by a tetrahedral distortion: An experimental and theoretical investigation , 2011 .

[16]  E. Kamitsos,et al.  Effect of synthesis method on the structure and properties of AgPO3-based glasses , 2011 .

[17]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[18]  S. Ribeiro,et al.  Structural investigations of tungsten silver phosphate glasses by solid state NMR, vibrational and X-ray absorption near edge spectroscopies , 2011 .

[19]  M. Deschenes,et al.  A microprobe for parallel optical and electrical recordings from single neurons in vivo , 2011, Nature Methods.

[20]  G. Singh,et al.  Effect of WO3 on structural and optical properties of CeO2–PbO–B2O3 glasses , 2011 .

[21]  P. Boolchand,et al.  Elastic flexibility, fast-ion conduction, boson and floppy modes in AgPO3–AgI glasses , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  F. C. Cassanjes,et al.  Redox behavior of molybdenum and tungsten in phosphate glasses. , 2008, The journal of physical chemistry. B.

[23]  Y. Baba,et al.  Dissolution behavior of ZnO–P2O5 glasses in water , 2006 .

[24]  S. Ribeiro,et al.  Structural studies of NaPO3–WO3 glasses by solid state NMR and Raman spectroscopy , 2006 .

[25]  C. Tomasi,et al.  Fractal nanochannels as the basis of the ionic transport in AgI-based glasses. , 2005, The journal of physical chemistry. B.

[26]  M. Poulain,et al.  Structural study of tungstate fluorophosphate glasses by Raman and X-ray absorption spectroscopy , 2005 .

[27]  S. Suthanthiraraj,et al.  Structural investigation of (CuI)0.45–(Ag2WO4)0.55 solid electrolyte using X-ray photoelectron and laser Raman spectroscopies , 2004 .

[28]  Melba Navarro,et al.  New macroporous calcium phosphate glass ceramic for guided bone regeneration. , 2004, Biomaterials.

[29]  G. H. Penner,et al.  Silver-109 NMR spectroscopy of inorganic solids. , 2004, Inorganic chemistry.

[30]  Joseph S. Hayden,et al.  Waveguide fabrication in phosphate glasses using femtosecond laser pulses , 2003 .

[31]  A. Heuer,et al.  Two-dimensional 109Ag NMR and random-walk simulation studies of silver dynamics in glassy silver ion conductors. , 2002, Solid state nuclear magnetic resonance.

[32]  G. Hoatson,et al.  Modelling one‐ and two‐dimensional solid‐state NMR spectra , 2002 .

[33]  Delbert E. Day,et al.  Chemical Durability and Structure of Zinc-iron Phosphate Glasses , 2001 .

[34]  C. Tomasi,et al.  Carrier density and mobility in AgI-AgPO3 glasses: A NMR study , 2001 .

[35]  Richard K. Brow,et al.  Review: the structure of simple phosphate glasses , 2000 .

[36]  T. Alam,et al.  Modifier coordination and phosphate glass networks , 1999 .

[37]  Lyndon Emsley,et al.  Through-Bond Carbon−Carbon Connectivities in Disordered Solids by NMR , 1999 .

[38]  N. Kuwata,et al.  Structure and ionic conductivity of rapidly quenched AgI–Ag2WO4 superionic conductor glasses , 1999 .

[39]  Pavel R. Hrma,et al.  Chemically durable iron phosphate glass wasteforms , 1998 .

[40]  C. Tomasi,et al.  Structure and cation dynamics in the systemAgI:Ag2MoO4:A109AgNMR study , 1998 .

[41]  B. Chowdari,et al.  Structure and ionic conduction in the Ag2O·WO3·TeO2 glass system , 1998 .

[42]  J. Zwanziger,et al.  Short and intermediate range order in glass: Nuclear magnetic resonance probes of site connectivities and distances , 1997 .

[43]  T. Jouini,et al.  Préparation et structure cristalline d’un nouveau matériau non centrosymétrique NaMoO2AsO4 , 1997 .

[44]  Y. Kogure,et al.  Thermal transport near glass transition in AgI-AgPO3 glasses , 1996 .

[45]  U. Hoppe A structural model for phosphate glasses , 1996 .

[46]  J. Zwanziger,et al.  Multi-nuclear and multi-dimensional nuclear magnetic resonance investigation of silver iodide-silver phosphate fast ion conducting glasses. , 1995, Solid state nuclear magnetic resonance.

[47]  C. Tomasi,et al.  Water content and thermal properties of glassy silver metaphosphate: role of the preparation , 1993 .

[48]  A. Clearfield,et al.  Synthesis and structural characterization of K(MoO2)(PO4) · H2O, and its topotatic reaction to form KMoO2PO4 , 1991 .

[49]  A. Pradel,et al.  Ionic conductive glasses , 1989 .

[50]  M. Averbuch-Pouchot Structure of an ammonium molybdenyl diphosphate: (NH4)2MoO2P2O7 , 1988 .

[51]  Johari,et al.  Fast ionic conduction via site percolation in AgI-AgPO3 glasses. , 1987, Physical review. B, Condensed matter.

[52]  J. Scott,et al.  Raman spectroscopy of structural phase transitions in Ag26I18W4O16 , 1978 .

[53]  S. Geller,et al.  (W4O16)8− Polyion in the high temperature modification of silver tungstate , 1975 .

[54]  R. Bartholomew Structure and properties of silver phosphate glasses — Infrared and visible spectra , 1972 .

[55]  C. Tomasi,et al.  Structure/transport relationships in silver-based oxide glasses: 1-D and 2-D NMR information. , 2005, Solid state nuclear magnetic resonance.

[56]  K. J. Rao,et al.  Vibrational Raman spectra of AgIAgPO3 glasses , 1990 .