The behavior of small and intermediate generations of poly(amidoamine) (PAMAM) dendrimers and PAMAM|gold nanocomposites was studied by computational tools and experimental techniques. Molecular dynamics simulations were used to characterize at the atomic level the stabilization mechanism of gold nanoparticles by dendrimeric platforms. Low PAMAM generations create a stabilization sphere around the nanoparticle, while upper PAMAM sizes provide stabilization sites through the internal voids. These results can help in the understanding of the stabilization process of metallic nanoparticles for the design and contribution of new nanotechnological applications.