A Parallel Proximal Splitting Method for Disparity Estimation from Multicomponent Images Under Illumination Variation

Proximal splitting algorithms play a central role in finding the numerical solution of convex optimization problems. This paper addresses the problem of stereo matching of multi-component images by jointly estimating the disparity and the illumination variation. The global formulation being non-convex, the problem is addressed by solving a sequence of convex relaxations. Each convex relaxation is non trivial and involves many constraints aiming at imposing some regularity on the solution. Experiments demonstrate that the method is efficient and provides better results compared with other approaches.

[1]  J. Pesquet,et al.  A Parallel Inertial Proximal Optimization Method , 2012 .

[2]  Guanghui Wang,et al.  Stereo matching algorithm based on curvelet decomposition and modified support weights , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  Andreas Klaus,et al.  Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[4]  Emanuele Trucco,et al.  A compact algorithm for rectification of stereo pairs , 2000, Machine Vision and Applications.

[5]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[6]  Ruigang Yang,et al.  BRDF Invariant Stereo Using Light Transport Constancy , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Miao Liao,et al.  Real-time Global Stereo Matching Using Hierarchical Belief Propagation , 2006, BMVC.

[8]  Han Wang,et al.  Recent Developments in Computer Vision , 1995, Lecture Notes in Computer Science.

[9]  Heinz H. Bauschke,et al.  Fixed-Point Algorithms for Inverse Problems in Science and Engineering , 2011, Springer Optimization and Its Applications.

[10]  Antonin Chambolle,et al.  Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage , 1998, IEEE Trans. Image Process..

[11]  Jean-Christophe Pesquet,et al.  A Convex Optimization Approach for Depth Estimation Under Illumination Variation , 2009, IEEE Transactions on Image Processing.

[12]  Minh N. Do,et al.  A revisit to cost aggregation in stereo matching: How far can we reduce its computational redundancy? , 2011, 2011 International Conference on Computer Vision.

[13]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[14]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[15]  Tony F. Chan,et al.  A General Framework for a Class of First Order Primal-Dual Algorithms for Convex Optimization in Imaging Science , 2010, SIAM J. Imaging Sci..

[16]  J. Moreau Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .

[17]  T. Poggio,et al.  A generalized ordering constraint for stereo correspondence , 1984 .

[18]  Patrick L. Combettes,et al.  Image restoration subject to a total variation constraint , 2004, IEEE Transactions on Image Processing.

[19]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[20]  P. L. Combettes,et al.  Proximity for sums of composite functions , 2010, 1007.3535.

[21]  Rachid Deriche,et al.  Optical-Flow Estimation while Preserving Its Discontinuities: A Variational Approach , 1995, ACCV.

[22]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[23]  In-So Kweon,et al.  Adaptive Support-Weight Approach for Correspondence Search , 2006, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Michael A. Gennert,et al.  Brightness-based Stereo Matching , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[25]  P. L. Combettes The foundations of set theoretic estimation , 1993 .

[26]  Ingemar J. Cox,et al.  Dynamic histogram warping of image pairs for constant image brightness , 1995, Proceedings., International Conference on Image Processing.

[27]  P. L. Combettes,et al.  A proximal decomposition method for solving convex variational inverse problems , 2008, 0807.2617.

[28]  Jean-Christophe Pesquet,et al.  Disparity Map Estimation Using A Total Variation Bound , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[29]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[30]  Du-Ming Tsai,et al.  The evaluation of normalized cross correlations for defect detection , 2003, Pattern Recognit. Lett..

[31]  Gabriele Steidl,et al.  Deblurring Poissonian images by split Bregman techniques , 2010, J. Vis. Commun. Image Represent..

[32]  van den BergEwout,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008 .

[33]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[34]  Nelly Pustelnik,et al.  Relaxing Tight Frame Condition in Parallel Proximal Methods for Signal Restoration , 2011, IEEE Transactions on Signal Processing.

[35]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[36]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[37]  S. Mallat A wavelet tour of signal processing , 1998 .

[38]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[39]  Nelly Pustelnik,et al.  Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization , 2009, IEEE Transactions on Image Processing.

[40]  Deguang Han,et al.  Frames, bases, and group representations , 2000 .

[41]  José M. Bioucas-Dias,et al.  An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems , 2009, IEEE Transactions on Image Processing.

[42]  Daniel Cremers,et al.  A Convex Formulation of Continuous Multi-label Problems , 2008, ECCV.

[43]  P. L. Combettes,et al.  Foundation of set theoretic estimation , 1993 .

[44]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[45]  Michael Unser,et al.  Hessian-Based Norm Regularization for Image Restoration With Biomedical Applications , 2012, IEEE Transactions on Image Processing.

[46]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[47]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[48]  Ruigang Yang,et al.  Global stereo matching leveraged by sparse ground control points , 2011, CVPR 2011.