UNIFORM DEFINABILITY IN PROPOSITIONAL DEPENDENCE LOGIC

Both propositional dependence logic and inquisitive logic are expressively complete. As a consequence, every formula in the language of inquisitive logic with intuitionistic disjunction or intuitionistic implication can be translated equivalently into a formula in the language of propositional dependence logic without these two connectives. We show that although such a (noncompositional) translation exists, neither intuitionistic disjunction nor intuitionistic implication is uniformly definable in propositional dependence logic.

[1]  Johan van Benthem,et al.  Handbook of Logic and Language , 1996 .

[2]  Floris Roelofsen,et al.  Inquisitive Logic , 2011, J. Philos. Log..

[3]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[4]  Wilfrid Hodges,et al.  Compositional Semantics for a Language of Imperfect Information , 1997, Log. J. IGPL.

[5]  Wilfrid Hodges,et al.  Remarks on Compositionality , 2016, Dependence Logic.

[6]  Fan Yang,et al.  Structural completeness in propositional logics of dependence , 2015, Arch. Math. Log..

[7]  Jouko A. Väänänen,et al.  Dependence Logic - A New Approach to Independence Friendly Logic , 2007, London Mathematical Society student texts.

[8]  Pietro Galliani Epistemic Operators in Dependence Logic , 2013, Stud Logica.

[9]  Bonnie J. Dorr Book Reviews: Compositional translation , 1995, CL.

[10]  Jonni Virtema,et al.  Axiomatizing Propositional Dependence Logics , 2015, CSL.

[11]  Wilfrid Hodges,et al.  Formal Features of Compositionality , 2001, J. Log. Lang. Inf..

[12]  Ivano Ciardelli,et al.  Inquisitive Semantics and Intermediate Logics. , 2009 .

[13]  Jouko Väänänen,et al.  From IF to BI , 2009, Synthese.

[14]  Stanley Peters,et al.  Quantifiers in language and logic , 2006 .

[15]  Theo M. V. Janssen Chapter 7 – Compositionality , 1997 .

[16]  Wilfrid Hodges Formalizing the relationship between meaning and syntax , 2012 .

[17]  Fan Yang,et al.  On Extensions and Variants of Dependence Logic : A study of intuitionistic connectives in the team semantics setting , 2014 .

[18]  J. Hintikka,et al.  Game-Theoretical Semantics , 1997 .

[19]  J. Hintikka,et al.  Informational Independence as a Semantical Phenomenon , 1989 .

[20]  Wilfried Hodges,et al.  Some Strange Quantifiers , 1997, Structures in Logic and Computer Science.

[21]  Fan Yang,et al.  Expressing Second-order Sentences in Intuitionistic Dependence Logic , 2013, Studia Logica.

[22]  Theo M. V. Janssen,et al.  Algebraic Translations, Correctness and Algebraic Compiler Construction , 1998, Theor. Comput. Sci..

[23]  Dag Westerståhl,et al.  Compositionality I: Definitions and Variants , 2010 .

[24]  Fan Yang,et al.  Propositional logics of dependence , 2014, Ann. Pure Appl. Log..

[25]  Valentin Goranko,et al.  LOGICS FOR PROPOSITIONAL DETERMINACY AND INDEPENDENCE , 2016, The Review of Symbolic Logic.