Laser-driven plasma pinching in e^{-}e^{+} cascade.

The cascaded production and dynamics of electron-positron plasma in ultimately focused laser fields of extreme intensity are studied by three-dimensional particle-in-cell simulations with the account of the relevant processes of quantum electrodynamics (QED). We show that, if the laser facility provides a total power above 20 PW, it is possible to trigger not only a QED cascade but also pinching in the produced electron-positron plasma. The plasma self-compression in this case leads to an abrupt rise of the peak density and magnetic (electric) field up to at least 10^{28}cm^{-3} and 1/20 (1/40) of the Schwinger field, respectively. Determining the actual limits and physics of this process might require quantum treatment beyond the used standard semiclassical approach. The proposed setup can thus provide extreme conditions for probing and exploring fundamental physics of the matter and vacuum.

[1]  T. N. Wistisen,et al.  Experimental evidence of quantum radiation reaction in aligned crystals , 2017, Nature Communications.

[2]  E. N. Nerush,et al.  Laser field absorption in self-generated electron-positron pair plasma. , 2011 .

[3]  A. R. Rao Annual Review of Astronomy and Astrophysics , 2015 .

[4]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[5]  O. Klimo,et al.  QED cascade with 10 PW-class lasers , 2017, Scientific Reports.

[6]  A M Fedotov,et al.  Limitations on the attainable intensity of high power lasers. , 2010, Physical review letters.

[7]  H. Exner,et al.  Geographical variation in morphology of Chaetosiphella stipae stipae Hille Ris Lambers, 1947 (Hemiptera: Aphididae: Chaitophorinae) , 2017, Scientific Reports.

[8]  Matteo Tamburini,et al.  Laser-pulse-shape control of seeded QED cascades , 2015, Scientific Reports.

[9]  Sergey Bastrakov,et al.  Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors , 2015, Comput. Phys. Commun..

[10]  Y. Fujimoto,et al.  Conceptual design of sub-exa-watt system by using optical parametric chirped pulse amplification , 2016 .

[11]  P. McKenna,et al.  Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam , 2017, 1707.06821.

[12]  N. Narozhny,et al.  Radiation friction versus ponderomotive effect , 2014, 1408.0362.

[13]  E Wallin,et al.  Extended particle-in-cell schemes for physics in ultrastrong laser fields: Review and developments. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Gerd Leuchs,et al.  Dipole pulse theory: Maximizing the field amplitude from 4 pi focused laser pulses , 2012 .

[15]  G. Mourou,et al.  Anomalous radiative trapping in laser fields of extreme intensity. , 2013, Physical review letters.

[16]  Z. Sheng,et al.  QED cascade saturation in extreme high fields , 2018, Scientific Reports.

[17]  J. Vieira,et al.  Generation of neutral and high-density electron–positron pair plasmas in the laboratory , 2015, Nature Communications.

[18]  K. Z. Hatsagortsyan,et al.  Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.

[19]  S. V. Bulanov,et al.  Electron dynamics and γ and e(-)e(+) production by colliding laser pulses. , 2015, Physical review. E.

[20]  V. S. Popov,et al.  Multiple colliding electromagnetic pulses: a way to lower the threshold of e+ e- pair production from vacuum. , 2010, Physical review letters.

[21]  Evgeny S Efimenko,et al.  Extreme plasma states in laser-governed vacuum breakdown , 2018, Scientific Reports.

[22]  B. E. Meierovich Electromagnetic collapse. Equilibrium of a dense pinch , 1982 .

[23]  R. Fonseca,et al.  Laser absorption via quantum electrodynamics cascades in counter propagating laser pulses , 2015, 1512.05174.

[24]  C. Keitel,et al.  Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser , 2017, Physical Review X.

[25]  Thomas Grismayer,et al.  Electron–positron cascades in multiple-laser optical traps , 2016, 1609.08081.

[26]  R. Fonseca,et al.  Laser absorption via QED cascades in counter propagating laser pulses , 2018 .

[27]  B. Shen,et al.  Radiation-reaction trapping of electrons in extreme laser fields. , 2014, Physical review letters.

[28]  P. Mészáros,et al.  Theories of Gamma-Ray Bursts , 2001, astro-ph/0111170.

[29]  A. Gonoskov,et al.  Ultrabright GeV Photon Source via Controlled Electromagnetic Cascades in Laser-Dipole Waves , 2016, 1610.06404.

[30]  P. Gratreau Generalized Bennett equilibria and particle orbit analysis of plasma columns carrying ultra‐high currents , 1978 .

[31]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[32]  S. V. Bulanov,et al.  Schwinger limit attainability with extreme power lasers. , 2010, Physical review letters.

[33]  A. Bell,et al.  Possibility of prolific pair production with high-power lasers. , 2008, Physical review letters.

[34]  E. N. Nerush,et al.  Optimized multibeam configuration for observation of QED cascades , 2015, 1505.06680.