On Floor-Plan of Plane Graphs

A floor-plan is a rectangle partitioned into a set of disjoint rectilinear polygonal regions (called modules). A floor-plan F represents a plane graph G as follows: Each vertex of G corresponds to a module of F and two vertices are adjacent in G iff their corresponding modules share a common boundary. Floor-plans find applications in VLSI chip design. If a module M is a union of k disjoint rectangles, M is called a k-rectangle module. It was shown in [K.-H. Yeap and M. Sarrafzadeh, SIAM J. Comput., 22 (1993), pp. 500--526] that every triangulated plane graph G has a floor-plan using 1-, 2-, and 3-rectangle modules. In this paper, we present a simple linear time algorithm that constructs a floor-plan for G using only 1- and 2-rectangle modules.

[1]  Goos Kant,et al.  Drawing planar graphs using the lmc-ordering , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[2]  Sartaj Sahni,et al.  A linear algorithm to find a rectangular dual of a planar triangulated graph , 1986, 23rd ACM/IEEE Design Automation Conference.

[3]  Shin-Ichi Nakano,et al.  Rectangular grid drawings of plane graphs , 1998, Comput. Geom..

[4]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[5]  William R. Heller,et al.  The Planar Package Planner for System Designers , 1982, DAC 1982.

[6]  K. Kozminski,et al.  Rectangular dualization and rectangular dissections , 1988 .

[7]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[8]  Yachyang Sun,et al.  Edge Covering of Complex triangles in Rectangular Dual floorplanning , 1993, J. Circuits Syst. Comput..

[9]  Xin He,et al.  On Finding the Rectangular Duals of Planar Triangular Graphs , 1993, SIAM J. Comput..

[10]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[11]  Majid Sarrafzadeh,et al.  Floorplanning by graph dualization: L-shaped modules , 2005, Algorithmica.

[12]  Sartaj Sahni,et al.  A linear time algorithm to check for the existence of a rectangular dual of a planar triangulated graph , 1987, Networks.

[13]  Shuji Tsukiyama,et al.  An Algorithm to Eliminate All Complex Triangles in a Maximal Planar Graph for Use in VLSI floorplan , 1993, Algorithmic Aspects of VLSI Layout.

[14]  Norishige Chiba,et al.  Arboricity and Subgraph Listing Algorithms , 1985, SIAM J. Comput..

[15]  William R. Heller,et al.  On finding Most Optimal Rectangular Package Plans , 1982, DAC 1982.

[16]  Goos Kant,et al.  Two Algorithms for Finding Rectangular Duals of Planar Graphs , 1993, WG.

[17]  W. T. Tutte On Hamiltonian Circuits , 1946 .

[18]  Ioannis G. Tollis,et al.  Algorithms for Drawing Graphs: an Annotated Bibliography , 1988, Comput. Geom..

[19]  Majid Sarrafzadeh,et al.  Floor-Planning by Graph Dualization: 2-Concave Rectilinear Modules , 1993, SIAM J. Comput..

[20]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .