Optimal observation network design for conceptual model discrimination and uncertainty reduction

This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.

[1]  Frank T.-C. Tsai,et al.  Bayesian model averaging for groundwater head prediction and uncertainty analysis using multimodel and multimethod , 2009 .

[2]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[3]  Amaro G. Barreto,et al.  A new approach for sequential experimental design for model discrimination , 2006 .

[4]  J. Vrugt,et al.  On the optimal design of experiments for conceptual and predictive discrimination of hydrologic system models , 2015 .

[5]  J. Eheart,et al.  Monitoring network design to provide initial detection of groundwater contamination , 1994 .

[6]  Harald Kunstmann,et al.  Conditional first‐order second‐moment method and its application to the quantification of uncertainty in groundwater modeling , 2002 .

[7]  V. Bense,et al.  The impact of faults on the hydrogeological conditions in the Roer Valley Rift System: an overview , 2003, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[8]  E. D. Brill,et al.  A method for locating wells in a groundwater monitoring network under conditions of uncertainty , 1988 .

[9]  S. Sorooshian,et al.  Multi-model ensemble hydrologic prediction using Bayesian model averaging , 2007 .

[10]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[11]  D. Prowell,et al.  Effect of faults on fluid flow and chloride contamination in a carbonate aquifer system , 1990 .

[12]  Patrick M. Reed,et al.  Many‐objective groundwater monitoring network design using bias‐aware ensemble Kalman filtering, evolutionary optimization, and visual analytics , 2011 .

[13]  Clifford I. Voss,et al.  Discrimination among one‐dimensional models of solute transport in porous media: Implications for sampling design , 1988 .

[14]  Ming Ye,et al.  A Model‐Averaging Method for Assessing Groundwater Conceptual Model Uncertainty , 2010, Ground water.

[15]  Alain Dassargues,et al.  Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging , 2008 .

[16]  C. Tiedeman,et al.  Effective Groundwater Model Calibration , 2007 .

[17]  Bithin Datta,et al.  Multiobjective Design of Dynamic Monitoring Networks for Detection of Groundwater Pollution , 2007 .

[18]  John Doherty,et al.  A short exploration of structural noise , 2010 .

[19]  K. Lee,et al.  Optimization of groundwater-monitoring networks for identification of the distribution of a contaminant plume , 2007 .

[20]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[21]  Nien-Sheng Hsu,et al.  Optimum experimental design for parameter identification in groundwater hydrology , 1989 .

[22]  Wolfgang Kinzelbach,et al.  Semianalytical uncertainty estimation of well catchments: Conditioning by head and transmissivity data , 2004 .

[23]  Brian J. Wagner,et al.  Sampling Design Methods For Groundwater Modeling Under Uncertainty , 1995 .

[24]  Domenico Baù,et al.  Multiobjective design of aquifer monitoring networks for optimal spatial prediction and geostatistical parameter estimation , 2013 .

[25]  A. Graettinger,et al.  MODFLOW 2000 Head Uncertainty, a First‐Order Second Moment Method , 2003, Ground water.

[26]  Frank T.-C. Tsai,et al.  Bayesian experimental design for identification of model propositions and conceptual model uncertainty reduction , 2015 .

[27]  G. Ran,et al.  The permeability of fault zones: a case study of the Dead Sea rift (Middle East) , 2014, Hydrogeology Journal.

[28]  Jens Christian Refsgaard,et al.  Assessment of hydrological model predictive ability given multiple conceptual geological models , 2012 .

[29]  Bithin Datta,et al.  Dynamic Optimal Monitoring Network Design for Transient Transport of Pollutants in Groundwater Aquifers , 2008 .

[30]  George Kuczera,et al.  Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors , 2010 .

[31]  M. B. Beck,et al.  On the identification of model structure in hydrological and environmental systems , 2007 .

[32]  K. Belitz,et al.  The hydrodynamics of the Big Horn Basin: a study of the role of faults , 1992 .

[33]  Jan Feyen,et al.  Use of sensitivity and uncertainty measures in distributed hydrological modeling with an application to the MIKE SHE model , 2002 .

[34]  A. Raftery,et al.  Discussion: Performance of Bayesian Model Averaging , 2003 .

[35]  Michael D. Dettinger,et al.  First order analysis of uncertainty in numerical models of groundwater flow part: 1. Mathematical development , 1981 .

[36]  Jens Christian Refsgaard,et al.  Review of strategies for handling geological uncertainty in groundwater flow and transport modeling , 2012 .

[37]  Hans Bock,et al.  Optimal experimental design for parameter estimation in column outflow experiments , 2002 .

[38]  B. Hobbs,et al.  Review of Ground‐Water Quality Monitoring Network Design , 1993 .

[39]  Sjoerd E. A. T. M. van der Zee,et al.  Measurement network design including traveltime determinations to minimize model prediction uncertainty , 2008 .

[40]  Okke Batelaan,et al.  On the value of conditioning data to reduce conceptual model uncertainty in groundwater modeling , 2010 .

[41]  Hans Jørgen Henriksen,et al.  Capture zone, travel time, and solute-transport predictions using inverse modeling and different geological models , 2003 .

[42]  James P. Evans,et al.  Permeability of fault-related rocks, and implications for hydraulic structure of fault zones , 1997 .

[43]  W. Yeh,et al.  Optimal observation network design for parameter structure identification in groundwater modeling , 2005 .

[44]  Ming Ye,et al.  Parallel Inverse Modeling and Uncertainty Quantification for Computationally Demanding Groundwater-Flow Models Using Covariance Matrix Adaptation , 2015 .

[45]  K. Jensen,et al.  The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system , 2007 .

[46]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[47]  Frank T.-C. Tsai,et al.  Inverse groundwater modeling for hydraulic conductivity estimation using Bayesian model averaging and variance window , 2008 .

[48]  S. Sorooshian,et al.  Multimodel Combination Techniques for Analysis of Hydrological Simulations: Application to Distributed Model Intercomparison Project Results , 2006 .

[49]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[50]  D. McKinney,et al.  Network design for predicting groundwater contamination , 1992 .

[51]  Y. Rubin,et al.  Bayesian geostatistical design: Task‐driven optimal site investigation when the geostatistical model is uncertain , 2010 .

[52]  Yunjung Hyun,et al.  Model Identification Criteria for Inverse Estimation of Hydraulic Parameters , 1998 .

[53]  William G. Hunter,et al.  Designs for Discriminating Between Two Rival Models , 1965 .

[54]  David Draper,et al.  Assessment and Propagation of Model Uncertainty , 2011 .

[55]  Nima Chitsazan,et al.  Bayesian Chance‐Constrained Hydraulic Barrier Design under Geological Structure Uncertainty , 2015, Ground water.

[56]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[57]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[58]  William W.-G. Yeh,et al.  A proposed stepwise regression method for model structure identification , 1998 .

[59]  Guido Buzzi-Ferraris,et al.  A new sequential experimental design procedure for discriminating among rival models , 1983 .

[60]  Y. Pachepsky,et al.  Augmentation of groundwater monitoring networks using information theory and ensemble modeling with pedotransfer functions , 2013 .

[61]  Ming Ye,et al.  Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff , 2003 .

[62]  Clifford I. Voss,et al.  Multiobjective sampling design for parameter estimation and model discrimination in groundwater solute transport , 1989 .

[63]  Frank T.-C. Tsai,et al.  Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging , 2015 .

[64]  A. Atkinson,et al.  The design of experiments for discriminating between two rival models , 1975 .

[65]  J. Bredehoeft The conceptualization model problem—surprise , 2005 .

[66]  B. Bates,et al.  A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .

[67]  F. Tsai,et al.  Indicator geostatistics for reconstructing Baton Rouge aquifer-fault hydrostratigraphy, Louisiana, USA , 2013, Hydrogeology Journal.

[68]  W. Yeh,et al.  Development of objective‐oriented groundwater models: 2. Robust experimental design , 2007 .

[69]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[70]  Mary C. Hill,et al.  Analysis of accuracy of approximate, simultaneous, nonlinear confidence intervals on hydraulic heads in analytical and numerical test cases , 1989 .

[71]  George F. Pinder,et al.  Optimal Search Strategy for the Definition of a DNAPL Source , 2003 .

[72]  Albert J. Valocchi,et al.  A method for the optimal location of monitoring wells for detection of groundwater contamination in three‐dimensional heterogenous aquifers , 1997 .

[73]  Frank T.-C. Tsai,et al.  Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation , 2013 .

[74]  M. B. Beck,et al.  Water quality modeling: A review of the analysis of uncertainty , 1987 .

[75]  A. Lobbrecht,et al.  Information theory–based approach for location of monitoring water level gauges in polders , 2010 .

[76]  George Christakos,et al.  Boundary condition sensitivity analysis of the stochastic flow equation , 1996 .

[77]  Hugo A. Loáiciga,et al.  A location modeling approach for groundwater monitoring network augmentation , 1992 .

[78]  Jasper A. Vrugt,et al.  Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models , 2008 .

[79]  Park M. Reilly,et al.  Statistical methods in model discrimination , 1970 .

[80]  Frank T.-C. Tsai,et al.  Constructive epistemic modeling of groundwater flow with geological structure and boundary condition uncertainty under the Bayesian paradigm , 2014 .

[81]  J. López–Fidalgo,et al.  An optimal experimental design criterion for discriminating between non‐normal models , 2007 .

[82]  Vijay P. Singh,et al.  Spatial assessment and redesign of a groundwater quality monitoring network using entropy theory, Gaza Strip, Palestine , 2006 .

[83]  Ming Ye,et al.  Towards a comprehensive assessment of model structural adequacy , 2012 .

[84]  M. Bakker,et al.  Groundwater flow through anisotropic fault zones in multiaquifer systems , 2008 .

[85]  Mary C. Hill,et al.  Evaluating model structure adequacy: The case of the Maggia Valley groundwater system, southern Switzerland , 2013 .

[86]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[87]  Ming Ye,et al.  Effects of error covariance structure on estimation of model averaging weights and predictive performance , 2013 .

[88]  S. P. Neuman,et al.  On model selection criteria in multimodel analysis , 2007 .

[89]  George F. Pinder,et al.  Space‐time optimization of groundwater quality sampling networks , 2005 .

[90]  B. Minsker,et al.  Cost‐effective long‐term groundwater monitoring design using a genetic algorithm and global mass interpolation , 2000 .

[91]  Thomas C. Harmon,et al.  Experimental design and model parameter estimation for locating a dissolving dense nonaqueous phase liquid pool in groundwater , 2002 .

[92]  S. P. Neuman,et al.  Maximum likelihood Bayesian averaging of uncertain model predictions , 2003 .

[93]  D. Boutt,et al.  A field study (Massachusetts, USA) of the factors controlling the depth of groundwater flow systems in crystalline fractured-rock terrain , 2010 .

[94]  David Anderson,et al.  Multimodel Ranking and Inference in Ground Water Modeling , 2004, Ground water.

[95]  Vijay P. Singh,et al.  Application of Information Theory to Groundwater Quality Monitoring Networks , 2002 .

[96]  A. Atkinson,et al.  Optimum experimental design for discriminating between two rival models in the presence of prior information , 1991 .

[97]  S. F. Mousavi,et al.  An approach to the design of experiments for discriminating among alternative conceptual models , 1992 .

[98]  M. Person,et al.  Faults as conduit‐barrier systems to fluid flow in siliciclastic sedimentary aquifers , 2006 .

[99]  W. Nowak,et al.  Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence , 2014, Water resources research.

[100]  William W.-G. Yeh,et al.  Sampling Network Design for Transport Parameter Identification , 1990 .

[101]  William J. Hill,et al.  Discrimination Among Mechanistic Models , 1967 .

[102]  Srikanta Mishra,et al.  Model Averaging Techniques for Quantifying Conceptual Model Uncertainty , 2010, Ground water.

[103]  Jeroen P. van der Sluijs,et al.  A framework for dealing with uncertainty due to model structure error , 2004 .

[104]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[105]  Bernard De Baets,et al.  Performance assessment of the anticipatory approach to optimal experimental design for model discrimination , 2012 .

[106]  Philip John Binning,et al.  Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework , 2010 .

[107]  L. Feyen,et al.  Reliable groundwater management in hydroecologically sensitive areas , 2004 .

[108]  J C Refsgaard,et al.  Model uncertainty--parameter uncertainty versus conceptual models. , 2005, Water science and technology : a journal of the International Association on Water Pollution Research.

[109]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[110]  L Foglia,et al.  Testing Alternative Ground Water Models Using Cross‐Validation and Other Methods , 2007, Ground water.