Bistatic synthetic aperture radar imaging for arbitrary trajectories in the presence of noise and clutter

We present an analytic, filtered-backprojection (FBP) type inversion method for bistatic synthetic aperture radar (BISAR) when the measurements have been corrupted by noise and clutter. The inversion method uses microlocal analysis in a statistical setting to design a backprojection filter that reduces the impact of noise and clutter while preserving the fidelity of the target image. We assume an isotropic single scattering model for the electromagnetic radiation that illuminates the scene of interest. We assume a priori statistical information on the target, clutter and noise. We demonstrate the performance of the algorithm and its ability to better resolve targets through numerical simulations.

[1]  James G. Berryman,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Interdisciplinary Applied Mathematics, Vol 13 , 2001 .

[2]  M. Cheney,et al.  Synthetic aperture inversion for arbitrary flight paths in the presence of noise and clutter , 2005, IEEE International Radar Conference, 2005..

[3]  W. Clem Karl,et al.  Superresolution and edge-preserving reconstruction of complex-valued synthetic aperture radar images , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[4]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[5]  D. Munson,et al.  A tomographic formulation of bistatic synthetic aperture radar , 1989 .

[6]  Can Evren Yarman,et al.  Synthetic-aperture inversion in the presence of noise and clutter , 2006 .

[7]  Brian D. Rigling,et al.  Signal processing strategies for bistatic synthetic aperture radar , 2003 .

[8]  Eric Todd Quinto,et al.  Singularities of the X-ray transform and limited data tomography , 1993 .

[9]  Margaret Cheney,et al.  Synthetic aperture inversion for arbitrary flight paths and nonflat topography , 2003, IEEE Trans. Image Process..

[10]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[11]  Lars M. H. Ulander,et al.  Ultra-wideband SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  Margaret Cheney Synthetic-aperture assessment of a dispersive surface , 2004, Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509).

[13]  Alain Grigis,et al.  Microlocal Analysis for Differential Operators: An Introduction , 1994 .

[14]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[15]  Mark A. Richards,et al.  Fundamentals of Radar Signal Processing , 2005 .

[16]  D. Munson,et al.  A tomographic formulation of spotlight-mode synthetic aperture radar , 1983, Proceedings of the IEEE.

[17]  M. Cheney,et al.  Synthetic aperture inversion , 2002 .

[18]  A. Papoulis Signal Analysis , 1977 .

[19]  William W. Symes,et al.  Global solution of a linearized inverse problem for the wave equation , 1997 .

[20]  L. Hörmander Fourier integral operators. I , 1995 .

[21]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[22]  A. M. Horne,et al.  Bistatic synthetic aperture radar , 2002, RADAR 2002.

[23]  Gregory Beylkin,et al.  Linearized inverse scattering problems in acoustics and elasticity , 1990 .

[24]  Lars M. H. Ulander,et al.  Low-frequency ultrawideband array-antenna SAR for stationary and moving target imaging , 1999, Defense, Security, and Sensing.

[25]  W. Clem Karl,et al.  Edge-preserving image reconstruction for coherent imaging applications , 2002, Proceedings. International Conference on Image Processing.

[26]  E. T. Quinto,et al.  Local Tomographic Methods in Sonar , 2000 .

[27]  L. Hörmander,et al.  Fourier integral operators. II , 1972 .

[28]  N. Kodaira Synthetic Aperture Radar (SAR), Part 3 , 1995 .