Singular integral equations of convolution type with Hilbert kernel and a discrete jump problem

One class of singular integral equations of convolution type with Hilbert kernel is studied in the space L2[−π,π]$L^{2}[-\pi, \pi]$ in the article. Such equations can be changed into either a system of discrete equations or a discrete jump problem depending on some parameter via the discrete Laurent transform. We can thus solve the equations with an explicit representation of solutions under certain conditions.

[1]  Muhammad Aslam Noor,et al.  An iterative method with cubic convergence for nonlinear equations , 2006, Appl. Math. Comput..

[2]  Pingrun Li,et al.  Some classes of equations of discrete type with harmonic singular operator and convolution , 2016, Appl. Math. Comput..

[3]  G. S. Litvinchuk,et al.  Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift , 2000 .

[4]  Muhammed I. Syam,et al.  Evolutionary computational intelligence in solving a class of nonlinear Volterra-Fredholm integro-differential equations , 2017, J. Comput. Appl. Math..

[5]  Maria Carmela De Bonis,et al.  Numerical solution of systems of Cauchy singular integral equations with constant coefficients , 2012, Appl. Math. Comput..

[6]  T. Nakazi,et al.  Normal Singular Integral Operators with Cauchy Kernel on L2 , 2014 .

[7]  P. Wójcik,et al.  Application of Faber polynomials to the approximate solution of singular integral equations with the Cauchy kernel , 2013 .

[8]  N. Mohankumar,et al.  On the numerical solution of Cauchy singular integral equations in neutron transport , 2008 .

[9]  Jian-ke Lu,et al.  Boundary Value Problems for Analytic Functions , 1994 .

[10]  Hong Du,et al.  Reproducing kernel method of solving singular integral equation with cosecant kernel , 2008 .

[11]  Ying Jiang,et al.  Fast Fourier-Galerkin methods for solving singular boundary integral equations: Numerical integration and precondition , 2010, J. Comput. Appl. Math..

[12]  Qiuhui Chen,et al.  Chirp transforms and Chirp series , 2011 .

[13]  S. Trofimchuk,et al.  Separation dichotomy and wavefronts for a nonlinear convolution equation , 2012, 1204.5760.

[14]  Pingrun Li Two classes of linear equations of discrete convolution type with harmonic singular operators , 2016 .

[15]  F. Smithies,et al.  Singular Integral Equations , 1977 .

[16]  N. Tuan,et al.  Generalized convolutions and the integral equations of the convolution type , 2010 .

[17]  Pingrun Li,et al.  Generalized convolution-type singular integral equations , 2017, Appl. Math. Comput..

[18]  F. Sommen,et al.  Boundary value problems for the quaternionic Hermitian system in R4n , 2012 .

[19]  Tao Qian,et al.  Two integral operators in Clifford analysis , 2009 .

[21]  F. Sommen,et al.  Boundary value problems for the quaternionic Hermitian system in R4n , 2012, Boundary Value Problems.

[22]  Muhammad Aslam Noor,et al.  Variational iteration technique for solving higher order boundary value problems , 2007, Appl. Math. Comput..