The Hsp70 and Hsp60 Chaperone Machines

[1]  H. Taguchi,et al.  Chaperonin releases the substrate protein in a form with tendency to aggregate and ability to rebind to chaperonin , 1995, FEBS letters.

[2]  John O. Thomas,et al.  A cytoplasmic chaperonin that catalyzes β-actin folding , 1992, Cell.

[3]  J. Rothman,et al.  Peptide binding and release by proteins implicated as catalysts of protein assembly. , 1989, Science.

[4]  Yechezkel Kashi,et al.  GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms , 1994, Cell.

[5]  R. Morimoto,et al.  The human cytosolic molecular chaperones hsp90, hsp70 (hsc70) and hdj‐1 have distinct roles in recognition of a non‐native protein and protein refolding. , 1996, The EMBO journal.

[6]  Bernd Bukau,et al.  Substrate specificity of the DnaK chaperone determined by screening cellulose‐bound peptide libraries , 1997, The EMBO journal.

[7]  F. Hartl,et al.  A zinc finger‐like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. , 1996, The EMBO journal.

[8]  T. Baker,et al.  PDZ-like Domains Mediate Binding Specificity in the Clp/Hsp100 Family of Chaperones and Protease Regulatory Subunits , 1997, Cell.

[9]  Y Q Qian,et al.  Nuclear magnetic resonance solution structure of the human Hsp40 (HDJ-1) J-domain. , 1996, Journal of molecular biology.

[10]  K. Braig,et al.  A polypeptide bound by the chaperonin groEL is localized within a central cavity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[11]  F. Hartl,et al.  Significant hydrogen exchange protection in GroEL‐bound DHFR is maintained during iterative rounds of substrate cycling , 1996, Protein science : a publication of the Protein Society.

[12]  J. Reinstein,et al.  The second step of ATP binding to DnaK induces peptide release. , 1996, Journal of molecular biology.

[13]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[14]  A. Horwich,et al.  GroEL‐Mediated protein folding , 1997, Protein science : a publication of the Protein Society.

[15]  P. Christen,et al.  The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. , 1997, Journal of molecular biology.

[16]  A. Horwich,et al.  Distinct actions of cis and trans ATP within the double ring of the chaperonin GroEL , 1997, Nature.

[17]  P. Horowitz,et al.  Characterization of a stable, reactivatable complex between chaperonin 60 and mitochondrial rhodanese. , 1992, The Journal of biological chemistry.

[18]  S. Rüdiger,et al.  Interaction of Hsp70 chaperones with substrates , 1997, Nature Structural Biology.

[19]  G. Lorimer,et al.  Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. , 1991, The Journal of biological chemistry.

[20]  T. Atkinson,et al.  Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. , 1993, Biochemistry.

[21]  Helen R Saibil,et al.  The Chaperonin ATPase Cycle: Mechanism of Allosteric Switching and Movements of Substrate-Binding Domains in GroEL , 1996, Cell.

[22]  A. Plückthun,et al.  beta-Lactamase binds to GroEL in a conformation highly protected against hydrogen/deuterium exchange. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  J. Buchner,et al.  How GroES Regulates Binding of Nonnative Protein to GroEL* , 1997, The Journal of Biological Chemistry.

[24]  K. Wüthrich,et al.  NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. , 1996, Journal of molecular biology.

[25]  F. Hartl,et al.  Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding , 1992, Nature.

[26]  F. Hartl,et al.  Molecular chaperones in cellular protein folding. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[27]  S. Jentsch,et al.  GrpE‐like regulation of the Hsc70 chaperone by the anti‐apoptotic protein BAG‐1 , 1997, The EMBO journal.

[28]  E. Eisenberg,et al.  Characterization of nucleotide-free uncoating ATPase and its binding to ATP, ADP, and ATP analogues. , 1994, Biochemistry.

[29]  G Blomqvist,et al.  Kinetic analysis. , 1991, Wiener klinische Wochenschrift.

[30]  Zbyszek Otwinowski,et al.  The crystal structure of the bacterial chaperonln GroEL at 2.8 Å , 1994, Nature.

[31]  K. Kuwajima,et al.  Effect of GroEL on the re-folding kinetics of alpha-lactalbumin. , 1996, Journal of molecular biology.

[32]  C. Georgopoulos,et al.  Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Martín,et al.  Asymmetrical interaction of GroEL and GroES in the ATPase cycle of assisted protein folding , 1995, Science.

[34]  G. Lorimer,et al.  A thermodynamic coupling mechanism for GroEL-mediated unfolding. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[35]  A. Horwich,et al.  The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex , 1997, Nature.

[36]  J. Rothman,et al.  Positive cooperativity in the functioning of molecular chaperone GroEL. , 1992, The Journal of biological chemistry.

[37]  M. Sousa,et al.  The molecular basis for the recognition of misfolded glycoproteins by the UDP‐Glc:glycoprotein glucosyltransferase. , 1995, The EMBO journal.

[38]  A. Clarke,et al.  Chaperonins can catalyse the reversal of early aggregation steps when a protein misfolds. , 1995, Journal of molecular biology.

[39]  R. Jordan,et al.  Modulation of the ATPase Activity of the Molecular Chaperone DnaK by Peptides and the DnaJ and GrpE Heat Shock Proteins (*) , 1995, The Journal of Biological Chemistry.

[40]  J. Frydman,et al.  Chaperones get in touch: the Hip-Hop connection. , 1997, Trends in biochemical sciences.

[41]  J. King,et al.  Selective in vivo rescue by GroEL/ES of thermolabile folding intermediates to phage P22 structural proteins. , 1994, The Journal of biological chemistry.

[42]  Richard I. Morimoto,et al.  1 Progress and Perspectives on the Biology of Heat Shock Proteins and Molecular Chaperones , 1994 .

[43]  E. Eisenberg,et al.  Nucleotide binding properties of bovine brain uncoating ATPase. , 1993, The Journal of biological chemistry.

[44]  J. Reinstein,et al.  The role of ATP in the functional cycle of the DnaK chaperone system. , 1995, Journal of molecular biology.

[45]  W. Baumeister,et al.  Structure of the Substrate Binding Domain of the Thermosome, an Archaeal Group II Chaperonin , 1997, Cell.

[46]  J. Weissman,et al.  Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under groes , 1995, Cell.

[47]  G. Lorimer Protein folding Folding with a two-stroke motor , 1997, Nature.

[48]  Neil A. Ranson,et al.  Location of a folding protein and shape changes in GroEL–GroES complexes imaged by cryo-electron microscopy , 1994, Nature.

[49]  C. Georgopoulos,et al.  The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. , 1994, The Journal of biological chemistry.

[50]  G. Lorimer,et al.  Reconstitution of active dimeric ribulose bisphosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP , 1989, Nature.

[51]  D. Mckay,et al.  Kinetics of nucleotide-induced changes in the tryptophan fluorescence of the molecular chaperone Hsc70 and its subfragments suggest the ATP-induced conformational change follows initial ATP binding. , 1995, Biochemistry.

[52]  K. Flaherty,et al.  Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein , 1990, Nature.

[53]  J. Reinstein,et al.  GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. , 1997, Biochemistry.

[54]  B. Bukau,et al.  Substrate shuttling between the DnaK and GroEL systems indicates a chaperone network promoting protein folding. , 1996, Journal of molecular biology.

[55]  P. Christen,et al.  Kinetics of molecular chaperone action. , 1994, Science.

[56]  F. Hartl,et al.  Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate , 1991, Nature.

[57]  A. Fersht,et al.  Catalysis of Amide Proton Exchange by the Molecular Chaperones GroEL and SecB , 1996, Science.

[58]  F. Hartl,et al.  DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat‐induced protein damage. , 1993, The EMBO journal.

[59]  M. Gaestel,et al.  Binding of non‐native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation , 1997, The EMBO journal.

[60]  B. Bukau,et al.  Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators , 1995, FEBS letters.

[61]  N. Pfanner,et al.  Role of mitochondrial GrpE and phosphate in the ATPase cycle of matrix Hsp70. , 1997, Journal of molecular biology.

[62]  F. Hartl,et al.  Protein folding in the central cavity of the GroEL–GroES chaperonin complex , 1996, Nature.

[63]  A. Horovitz,et al.  Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. , 1995, Biochemistry.

[64]  D Thirumalai,et al.  Chaperonin-facilitated protein folding: optimization of rate and yield by an iterative annealing mechanism. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  C. Dobson,et al.  Conformation of GroEL-bound alpha-lactalbumin probed by mass spectrometry. , 1994, Nature.

[66]  Garrett J. Lee,et al.  A small heat shock protein stably binds heat‐denatured model substrates and can maintain a substrate in a folding‐competent state , 1997, The EMBO journal.

[67]  L. Pearl,et al.  Identification and Structural Characterization of the ATP/ADP-Binding Site in the Hsp90 Molecular Chaperone , 1997, Cell.

[68]  E. Eisenstein,et al.  The Hydrophobic Nature of GroEL-Substrate Binding (*) , 1995, The Journal of Biological Chemistry.

[69]  D. Boisvert,et al.  The 2.4 A crystal structure of the bacterial chaperonin GroEL complexed with ATP gamma S. , 1996, Nature structural biology.

[70]  M. Fisher,et al.  Interactions between the GroE Chaperonins and Rhodanese , 1995, The Journal of Biological Chemistry.

[71]  K. Hodgson,et al.  Solution small-angle X-ray scattering study of the molecular chaperone Hsc70 and its subfragments. , 1995, Biochemistry.

[72]  K. Dill,et al.  From Levinthal to pathways to funnels , 1997, Nature Structural Biology.

[73]  K. Flaherty,et al.  Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment. , 1994, The Journal of biological chemistry.

[74]  Denis L. Rousseau,et al.  Ligand exchange during cytochrome c folding , 1997, Nature Structural Biology.

[75]  A. Clarke,et al.  The origins and consequences of asymmetry in the chaperonin reaction cycle. , 1995, Journal of molecular biology.

[76]  E. Trombetta,et al.  Calnexin, calreticulin and the folding of glycoproteins. , 1997, Trends in cell biology.

[77]  K. Yamamoto,et al.  Hold 'em and fold 'em: chaperones and signal transduction. , 1995, Science.

[78]  K. Wüthrich,et al.  NMR structure determination of the Escherichia coli DnaJ molecular chaperone: secondary structure and backbone fold of the N-terminal region (residues 2-108) containing the highly conserved J domain. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[79]  W. Baumeister,et al.  Chaperonin‐mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. , 1992, The EMBO journal.

[80]  K. Wüthrich,et al.  Destabilization of the complete protein secondary structure on binding to the chaperone GroEL , 1994, Nature.

[81]  J Kuriyan,et al.  Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. , 1997, Science.

[82]  D. Mckay,et al.  ATPase kinetics of recombinant bovine 70 kDa heat shock cognate protein and its amino-terminal ATPase domain. , 1994, Biochemistry.

[83]  S. Lindquist,et al.  HSP100/Clp proteins: a common mechanism explains diverse functions. , 1996, Trends in biochemical sciences.

[84]  J. Rothman,et al.  Peptide-binding specificity of the molecular chaperone BiP , 1991, Nature.

[85]  Craig M. Ogata,et al.  Structural Analysis of Substrate Binding by the Molecular Chaperone DnaK , 1996, Science.

[86]  E. Bochkareva,et al.  ATP induces non-identity of two rings in chaperonin GroEL. , 1994, The Journal of biological chemistry.

[87]  J. Deisenhofer,et al.  Structural Adaptations in the Specialized Bacteriophage T4 Co-Chaperonin Gp31 Expand the Size of the Anfinsen Cage , 1997, Cell.

[88]  J. Reinstein,et al.  Nucleotide-induced Conformational Changes in the ATPase and Substrate Binding Domains of the DnaK Chaperone Provide Evidence for Interdomain Communication (*) , 1995, The Journal of Biological Chemistry.

[89]  F. Hartl,et al.  The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[90]  William J. Welch,et al.  ATP-induced protein Hsp70 complex dissociation requires K+ but not ATP hydrolysis , 1993, Nature.

[91]  A. Horwich,et al.  CRYSTAL STRUCTURE OF THE ASYMMETRIC CHAPERONIN COMPLEX GROEL/GROES/(ADP)7 , 1997 .

[92]  E. Craig,et al.  The Dissociation of ATP from hsp70 of Saccharomyces cerevisiae Is Stimulated by Both Ydj1p and Peptide Substrates (*) , 1995, The Journal of Biological Chemistry.

[93]  G. C. Flynn,et al.  GroEL Binds to and Unfolds Rhodanese Posttranslationally (*) , 1996, The Journal of Biological Chemistry.

[94]  A. Fersht,et al.  A structural model for GroEL-polypeptide recognition. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Y. Kashi,et al.  Residues in chaperonin GroEL required for polypeptide binding and release , 1994, Nature.

[96]  H. Bujard,et al.  A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32. , 1996, The EMBO journal.

[97]  A. Fersht,et al.  Cooperativity in ATP hydrolysis by GroEL is increased by GroES , 1991, FEBS letters.

[98]  A. Clarke,et al.  Binding, encapsulation and ejection: substrate dynamics during a chaperonin-assisted folding reaction. , 1997, Journal of molecular biology.

[99]  J. Deisenhofer,et al.  The crystal structure of the GroES co-chaperonin at 2.8 Å resolution , 1996, Nature.

[100]  K. Flaherty,et al.  Lysine 71 of the Chaperone Protein Hsc70 Is Essential for ATP Hydrolysis* , 1996, The Journal of Biological Chemistry.

[101]  G. Lorimer,et al.  Dynamics of the chaperonin ATPase cycle: implications for facilitated protein folding. , 1994, Science.

[102]  H. Taguchi,et al.  Kinetic analysis of interactions between GroEL and reduced alpha-lactalbumin. Effect of GroES and nucleotides. , 1995, The Journal of biological chemistry.

[103]  W. Tap,et al.  Specificity in chaperonin-mediated protein folding , 1995, Nature.

[104]  C. Georgopoulos,et al.  The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma 32 heat shock transcriptional regulator. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[105]  E. Craig,et al.  Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae. , 1997, Journal of molecular biology.

[106]  Zbyszek Otwinowski,et al.  The 2.4 Å crystal structure of the bacterial chaperonin GroEL complexed with ATPγS , 1996, Nature Structural Biology.

[107]  Lila M. Gierasch,et al.  Characterization of a functionally important mobile domain of GroES , 1993, Nature.

[108]  J. Weissman,et al.  Characterization of the Active Intermediate of a GroEL–GroES-Mediated Protein Folding Reaction , 1996, Cell.

[109]  J. Weissman,et al.  Release of both native and non-native proteins from a cis-only GroEL ternary complex , 1996, Nature.

[110]  A. Karzai,et al.  A Bipartite Signaling Mechanism Involved in DnaJ-mediated Activation of the Escherichia coli DnaK Protein (*) , 1996, The Journal of Biological Chemistry.

[111]  D A Agard,et al.  To fold or not to fold.... , 1993, Science.

[112]  S. Mande,et al.  Structure of the Heat Shock Protein Chaperonin-10 of Mycobacterium leprae , 1996, Science.

[113]  A. Horwich,et al.  Native-like structure of a protein-folding intermediate bound to the chaperonin GroEL. , 1997, Proceedings of the National Academy of Sciences of the United States of America.