Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity

[1]  Ramkumar Veppathur Mohan,et al.  Identifying disease-critical cell types and cellular processes across the human body by integration of single-cell profiles and human genetics , 2021, bioRxiv.

[2]  Sina A. Gharib,et al.  Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression , 2021, Nature Genetics.

[3]  Ryan L. Collins,et al.  Genome-wide enhancer maps link risk variants to disease genes , 2021, Nature.

[4]  Manolis Kellis,et al.  Regulatory genomic circuitry of human disease loci by integrative epigenomics , 2021, Nature.

[5]  Ellen M. Schmidt,et al.  Open Targets Genetics: An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci , 2020, bioRxiv.

[6]  Alexander E. Lopez,et al.  Exome sequencing and characterization of 49,960 individuals in the UK Biobank , 2020, Nature.

[7]  Jacob C. Ulirsch,et al.  Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases , 2020, Nature Genetics.

[8]  Y. Gilad,et al.  Where Are the Disease-Associated eQTLs? , 2020, Trends in genetics : TIG.

[9]  David B. Goldstein,et al.  Enhancer Domains Predict Gene Pathogenicity and Inform Gene Discovery in Complex Disease. , 2020, American journal of human genetics.

[10]  Mark I. McCarthy,et al.  A brief history of human disease genetics , 2020, Nature.

[11]  Jane E. Carpenter,et al.  Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes , 2019, Nature Genetics.

[12]  Matti Pirinen,et al.  Functionally-informed fine-mapping and polygenic localization of complex trait heritability , 2019, Nature Genetics.

[13]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[14]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[15]  D. Goldstein,et al.  Rare-variant collapsing analyses for complex traits: guidelines and applications , 2019, Nature Reviews Genetics.

[16]  Alkes L. Price,et al.  Quantifying genetic effects on disease mediated by assayed gene expression levels , 2019, Nature Genetics.

[17]  Bing Ren,et al.  A Compendium of Promoter-Centered Long-Range Chromatin Interactions in the Human Genome , 2019, Nature Genetics.

[18]  A. Price,et al.  Reconciling S-LDSC and LDAK functional enrichment estimates , 2019, Nature Genetics.

[19]  Neva C. Durand,et al.  Activity-by-Contact model of enhancer-promoter regulation from thousands of CRISPR perturbations , 2019, Nature Genetics.

[20]  Michael J. Gloudemans,et al.  Abundant associations with gene expression complicate GWAS follow-up , 2019, Nature Genetics.

[21]  Howard Y. Chang,et al.  Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion , 2019, Nature Biotechnology.

[22]  David A. Knowles,et al.  Opportunities and challenges for transcriptome-wide association studies , 2019, Nature Genetics.

[23]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[24]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[25]  Yang I Li,et al.  Trans Effects on Gene Expression Can Drive Omnigenic Inheritance , 2018, Cell.

[26]  Zoltán Kutalik,et al.  Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits , 2019, Nature Communications.

[27]  Matthew Stephens,et al.  A simple new approach to variable selection in regression, with application to genetic fine-mapping , 2018, bioRxiv.

[28]  P. Donnelly,et al.  The UK Biobank resource with deep phenotyping and genomic data , 2018, Nature.

[29]  N. Patterson,et al.  Extreme Polygenicity of Complex Traits Is Explained by Negative Selection. , 2019, American journal of human genetics.

[30]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.

[31]  M. McCarthy,et al.  Using an atlas of gene regulation across 44 human tissues to inform complex disease- 1 and trait-associated variation , 2018 .

[32]  P. Visscher,et al.  Common Disease Is More Complex Than Implied by the Core Gene Omnigenic Model , 2018, Cell.

[33]  D. Schaid,et al.  From genome-wide associations to candidate causal variants by statistical fine-mapping , 2018, Nature Reviews Genetics.

[34]  David Z. Pan,et al.  Phenotype-specific enrichment of Mendelian disorder genes near GWAS regions across 62 complex traits , 2018, bioRxiv.

[35]  A. Chen-Plotkin,et al.  The Post-GWAS Era: From Association to Function. , 2018, American journal of human genetics.

[36]  Yakir A Reshef,et al.  Leveraging molecular quantitative trait loci to understand the genetic architecture of diseases and complex traits , 2018, Nature Genetics.

[37]  Christopher D. Brown,et al.  A dementia-associated risk variant near TMEM106B alters chromatin architecture and gene expression , 2017, bioRxiv.

[38]  Gary D Bader,et al.  Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.

[39]  Manolis Kellis,et al.  Evidence of reduced recombination rate in human regulatory domains , 2017, Genome Biology.

[40]  Howard Y. Chang,et al.  Discovery of stimulation-responsive immune enhancers with CRISPR activation , 2017, Nature.

[41]  Jesse M. Engreitz,et al.  A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression , 2017, Cell.

[42]  P. Visscher,et al.  10 Years of GWAS Discovery: Biology, Function, and Translation. , 2017, American journal of human genetics.

[43]  Yang I Li,et al.  An Expanded View of Complex Traits: From Polygenic to Omnigenic , 2017, Cell.

[44]  Doron Lancet,et al.  GeneHancer: genome-wide integration of enhancers and target genes in GeneCards , 2017, Database J. Biol. Databases Curation.

[45]  Nikolaos A Patsopoulos,et al.  Limited statistical evidence for shared genetic effects of eQTLs and autoimmune disease-associated loci in three major immune cell types , 2017, Nature Genetics.

[46]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[47]  B. Neale,et al.  Linkage disequilibrium dependent architecture of human complex traits reveals action of negative selection , 2016, bioRxiv.

[48]  Jonathan M. Cairns,et al.  Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters , 2016, Cell.

[49]  Ayellet V. Segrè,et al.  Colocalization of GWAS and eQTL Signals Detects Target Genes , 2016, bioRxiv.

[50]  Jacob C. Ulirsch,et al.  Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits , 2016, Cell.

[51]  Yonatan Stelzer,et al.  Parkinson-associated risk variant in enhancer element produces subtle effect on target gene expression , 2016, Nature.

[52]  Robert W. Mills,et al.  Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures , 2016, eLife.

[53]  Wen J. Li,et al.  Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation , 2015, Nucleic Acids Res..

[54]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[55]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[56]  Z. Szallasi,et al.  CAUSEL: An epigenome and genome editing pipeline for establishing function of non-coding GWAS variants , 2015, Nature Medicine.

[57]  Matti Pirinen,et al.  FINEMAP: efficient variable selection using summary data from genome-wide association studies , 2015, bioRxiv.

[58]  Yakir A Reshef,et al.  Partitioning heritability by functional annotation using genome-wide association summary statistics , 2015, Nature Genetics.

[59]  Manolis Kellis,et al.  FTO Obesity Variant Circuitry and Adipocyte Browning in Humans. , 2015, The New England journal of medicine.

[60]  S. Edwards,et al.  Long-Range Modulation of PAG1 Expression by 8q21 Allergy Risk Variants. , 2015, American journal of human genetics.

[61]  Kaanan P. Shah,et al.  A gene-based association method for mapping traits using reference transcriptome data , 2015, Nature Genetics.

[62]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[63]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[64]  Jaana M. Hartikainen,et al.  Fine-scale mapping of the 5q11.2 breast cancer locus reveals at least three independent risk variants regulating MAP3K1. , 2015, American journal of human genetics.

[65]  Donghyung Lee,et al.  JEPEG: a summary statistics based tool for gene-level joint testing of functional variants , 2014, Bioinform..

[66]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[67]  Kyle J. Gaulton,et al.  Identification of a Regulatory Variant That Binds FOXA1 and FOXA2 at the CDC123/CAMK1D Type 2 Diabetes GWAS Locus , 2014, PLoS genetics.

[68]  Nancy F. Hansen,et al.  An enhancer polymorphism at the cardiomyocyte intercalated disc protein NOS1AP locus is a major regulator of the QT interval. , 2014, American journal of human genetics.

[69]  P. Gaffney,et al.  Two functional lupus-associated BLK promoter variants control cell-type- and developmental-stage-specific transcription. , 2014, American journal of human genetics.

[70]  W. V. van IJcken,et al.  HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers. , 2014, The Journal of clinical investigation.

[71]  J. Seidman,et al.  A common genetic variant within SCN10A modulates cardiac SCN5A expression. , 2014, The Journal of clinical investigation.

[72]  Kai Zhang,et al.  A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding , 2014, Nature Genetics.

[73]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[74]  Matthew C. Canver,et al.  An Erythroid Enhancer of BCL11A Subject to Genetic Variation Determines Fetal Hemoglobin Level , 2013, Science.

[75]  Buhm Han,et al.  Chromatin marks identify critical cell types for fine mapping complex trait variants , 2012 .

[76]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[77]  Albert J. Vilella,et al.  A high-resolution map of human evolutionary constraint using 29 mammals , 2011, Nature.

[78]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[79]  Olle Melander,et al.  From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus , 2010, Nature.

[80]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[81]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.