A new notion of commutativity for the algorithmic Lovász Local Lemma

The Lovasz Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser and Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for existence of and fast convergence to desirable objects, one may naturally ask further questions regarding properties of these algorithms. For instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?", etc. These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs.

[1]  Alistair Sinclair,et al.  Beyond the Lovász Local Lemma: Point to Set Correlations and Their Algorithmic Applications , 2018, 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS).

[2]  Dimitris Achlioptas,et al.  Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[3]  Gábor Tardos,et al.  A constructive proof of the general lovász local lemma , 2009, JACM.

[4]  Vladimir Kolmogorov,et al.  Commutativity in the Algorithmic Lovász Local Lemma , 2015, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[5]  David G. Harris New bounds for the Moser-Tardos distribution , 2020, Random Struct. Algorithms.

[6]  David G. Harris Lopsidependency in the Moser-Tardos framework: Beyond the Lopsided Lovász Local Lemma , 2015, SODA.

[7]  Jan Vondrák,et al.  An Algorithmic Proof of the Lovasz Local Lemma via Resampling Oracles , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[8]  Aravind Srinivasan,et al.  New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[9]  Mario Szegedy,et al.  Moser and tardos meet Lovász , 2011, STOC.

[10]  P. Erdos-L Lovász Problems and Results on 3-chromatic Hypergraphs and Some Related Questions , 2022 .

[11]  Aravind Srinivasan,et al.  A Constructive Lovász Local Lemma for Permutations , 2017, Theory Comput..

[12]  Bernhard Haeupler,et al.  Parallel Algorithms and Concentration Bounds for the Lovász Local Lemma via Witness DAGs , 2015, SODA.

[13]  James B. Shearer,et al.  On a problem of spencer , 1985, Comb..

[14]  Hsin-Hao Su,et al.  Distributed algorithms for the Lovász local lemma and graph coloring , 2014, Distributed Computing.

[15]  David G. Harris,et al.  Oblivious Resampling Oracles and Parallel Algorithms for the Lopsided Lovász Local Lemma , 2017, SODA.

[16]  Aravind Srinivasan,et al.  Partial Resampling to Approximate Covering Integer Programs , 2015, SODA.

[17]  Karthekeyan Chandrasekaran,et al.  Deterministic algorithms for the Lovász Local Lemma , 2009, SODA '10.

[18]  Fotis Iliopoulos,et al.  Commutative Algorithms Approximate the LLL-distribution , 2017, APPROX-RANDOM.

[19]  Wesley Pegden,et al.  An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..

[20]  Aravind Srinivasan,et al.  Algorithmic and Enumerative Aspects of the Moser-Tardos Distribution , 2015, SODA.

[21]  Alistair Sinclair,et al.  Efficiently list-edge coloring multigraphs asymptotically optimally , 2020, SODA.

[22]  Vladimir Kolmogorov,et al.  A Local Lemma for Focused Stochastic Algorithms , 2019, SIAM J. Comput..

[23]  Mario Szegedy,et al.  A Sharper Local Lemma with Improved Applications , 2012, APPROX-RANDOM.