A posteriori error estimation of h-p finite element approximations of frictional contact problems

Abstract Dynamic and static frictional contact problems are described using the normal compliance law on the contact boundary. Dynamic problems are recast into quasistatic problems by time discretization. An a posteriori error estimator is developed for a nonlinear elliptic equation of corresponding static or quasistatic problems. The a posteriori error estimator is applied to a frictionless case and extended to frictional contact problems. Also an adaptive strategy is introduced and h - p finite element meshes are obtained through a procedure based on a priori and a posteriori error estimations. Numerical examples are given to support the theoretical results.

[1]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[2]  Ivo Babuška,et al.  A posteriori error analysis and adaptive processes in the finite element method: Part I—error analysis , 1983 .

[3]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[4]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[5]  J. Oden,et al.  A posteriori error estimation for h-p approximations in elastostatics , 1994 .

[6]  J. Tinsley Oden,et al.  A priori error estimation of hp-finite element approximations of frictional contact problems with normal compliance , 1993 .

[7]  Meir Shillor,et al.  On friction problems with normal compliance , 1989 .

[8]  Mark Ainsworth,et al.  A posteriori error estimators for second order elliptic systems part 2. An optimal order process for calculating self-equilibrating fluxes , 1993 .

[9]  J. Oden,et al.  A unified approach to a posteriori error estimation using element residual methods , 1993 .

[10]  A. Klarbring,et al.  FRICTIONAL CONTACT PROBLEMS WITH NORMAL COMPLIANCE , 1988 .

[11]  J. Oden,et al.  On some existence and uniqueness results in contact problems with nonlocal friction , 1982 .

[12]  Leszek Demkowicz,et al.  Advances in adaptive improvements : A survey of adaptive finite element methods in computational mechanics , 1988 .

[13]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[14]  J. Tinsley Oden,et al.  Local a posteriori error estimators for variational inequalities , 1993 .

[15]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[16]  J. Oden,et al.  Theory and approximation of quasistatic frictional contact problems , 1993 .

[17]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[18]  J. T. Oden,et al.  Models and computational methods for dynamic friction phenomena , 1984 .

[19]  Yusheng Feng,et al.  hp adaptive strategy , 1992 .