Quantum-metrology estimation of spacetime parameters of the Earth outperforming classical precision

We consider quantum communication schemes where quantum optical signals are exchanged between a source on Earth and a satellite. The background curved spacetime affects the quantum state of the propagating photons. We employ quantum-metrology techniques to obtain optimal bounds for the precision of quantum measurements of relevant physical parameters encoded in the final state. We focus on satellites in low Earth orbits and we find that our scheme improves the precision of the measurement of the Schwarzschild radius obtained within previous studies. Therefore, our techniques can provide the theoretical tools for novel developments that can potentially outperform the state-of-the-art obtained through classical means. We also review the impact of the relativistic effects on a simple quantum key distribution protocol within satellite schemes and find that such effects can be greatly damaging if they are not properly accounted for.

[1]  Paolo Villoresi,et al.  Experimental Satellite Quantum Communications. , 2014, Physical review letters.

[2]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[3]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[4]  Gerardo Adesso,et al.  Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies , 2013, Scientific Reports.

[5]  David Edward Bruschi,et al.  Quantum communications and quantum metrology in the spacetime of a rotating planet , 2015, EPJ Quantum Technology.

[6]  G. Vallone,et al.  Experimental single photon exchange along a space link of 7000 km , 2015, 1509.05692.

[7]  F. Felice,et al.  On the Meaning of the separation constant in the Kerr metric , 1999 .

[8]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[9]  N. C. Menicucci,et al.  Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities , 2012, 1206.4949.

[10]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[11]  Jian-Wei Pan,et al.  Satellite-Relayed Intercontinental Quantum Network. , 2018, Physical review letters.

[12]  David Edward Bruschi,et al.  Spacetime effects on satellite-based quantum communications , 2013, 1309.3088.

[13]  T. Ralph,et al.  Estimating spacetime parameters with a quantum probe in a lossy environment , 2016, 1603.01927.

[14]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[15]  H. Westman,et al.  Localized qubits in curved spacetimes , 2011, 1108.3896.

[16]  David Edward Bruschi,et al.  Gravity in the quantum lab , 2016, 1607.06666.

[17]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[18]  Kamil Bradler,et al.  Relativistically invariant photonic wave packets , 2009, 0910.0497.

[19]  David Edward Bruschi,et al.  Quantum metrology for relativistic quantum fields , 2013, 1312.5707.

[20]  G. Vallone,et al.  Interference at the Single Photon Level Along Satellite-Ground Channels. , 2015, Physical review letters.

[21]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[22]  David Edward Bruschi,et al.  Quantum estimation of the Schwarzschild spacetime parameters of the Earth , 2014, 1409.0234.

[23]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[24]  D. Bini,et al.  Equatorial Circular Geodesics in the Hartle-Thorne Spacetime , 2013, 1306.4792.

[25]  David Edward Bruschi,et al.  Wigner phase of photonic helicity states in the spacetime of the Earth , 2018, 1810.10502.

[26]  Stephen D. Bartlett,et al.  Relativistically invariant quantum information , 2005 .