Nonlinear quantum metrology using coupled nanomechanical resonators

We consider a nanomechanical analogue of a nonlinear interferometer, consisting of two parallel, flexural nanomechanical resonators, each with an intrinsic Duffing nonlinearity and with a switchable beamsplitter-like coupling between them. We calculate the precision with which the strength of the nonlinearity can be estimated and show that it scales as 1/n3/2, where n is the mean phonon number of the initial state. This result holds even in the presence of dissipation, but assumes the ability to make measurements of the quadrature components of the nanoresonators.

[1]  D. Berry,et al.  Entanglement-free Heisenberg-limited phase estimation , 2007, Nature.

[2]  Helmut Seidel,et al.  Resonant accelerometer with self-test , 2001 .

[3]  Alfredo Luis,et al.  Nonlinear transformations and the Heisenberg limit , 2004 .

[4]  Accessibility of quantum effects in mesomechanical systems , 2001 .

[5]  J. Teufel,et al.  Measuring nanomechanical motion with a microwave cavity interferometer , 2008, 0801.1827.

[6]  Terry Rudolph,et al.  Quantum communication complexity of establishing a shared reference frame. , 2003, Physical review letters.

[7]  S. Bartlett,et al.  Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement , 2005, quant-ph/0505112.

[8]  A. Luis Quantum limits, nonseparable transformations, and nonlinear optics , 2007 .

[9]  A. Luis,et al.  Breaking the Heisenberg limit with inefficient detectors , 2005 .

[10]  J. Teufel,et al.  Prospects for cooling nanomechanical motion by coupling to a superconducting microwave resonator , 2008, 0803.4007.

[11]  S. Diddams,et al.  Standards of Time and Frequency at the Outset of the 21st Century , 2004, Science.

[12]  Milburn,et al.  Dissipative quantum and classical Liouville mechanics of the anharmonic oscillator. , 1986, Physical review letters.

[13]  C. Helstrom Quantum detection and estimation theory , 1969 .

[14]  Milburn,et al.  Destruction of quantum coherence in a nonlinear oscillator via attenuation and amplification. , 1989, Physical review. A, General physics.

[15]  A. Cleland,et al.  Noise-enabled precision measurements of a duffing nanomechanical resonator. , 2004, Physical review letters.

[16]  Animesh Datta,et al.  Quantum metrology: dynamics versus entanglement. , 2008, Physical review letters.

[17]  R. L. Badzey,et al.  Quantum friction in nanomechanical oscillators at millikelvin temperatures , 2005, cond-mat/0603691.

[18]  Milburn,et al.  Quantum and classical Liouville dynamics of the anharmonic oscillator. , 1986, Physical review. A, General physics.

[19]  A. Datta,et al.  Quantum-limited metrology with product states , 2007, 0710.0285.

[20]  L. Jiang,et al.  Quantum-limited measurements of atomic scattering properties , 2007, 0706.3376.

[21]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[22]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[23]  M. Roukes,et al.  Basins of attraction of a nonlinear nanomechanical resonator. , 2007, Physical review letters.

[24]  B. Sundaram,et al.  Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit , 2007, 0709.3842.

[25]  Yamamoto,et al.  Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. , 1986, Physical review. A, General physics.

[26]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.