Data Mining Techniques and Applications for Tourism Internet Marketing

Abstract The travel industry is a provider of experiences, and increasingly these experiences need to be customized. This paper analyzes the potential uses of Data Mining techniques in Tourism Internet Marketing and electronic customer relationship management. Various Data Mining technologies are described and their potential uses in the travel industry are explained. In particular, customer profiling, inquiry routing, e-mail filtering, on-line auctions, and updating e-catalogs are explained. The challenges in implementing these and other techniques are addressed at the end of the paper.

[1]  Christos Faloutsos,et al.  FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets , 1995, SIGMOD '95.

[2]  Thomas L. Ainscough,et al.  The Internet for the rest of us: Marketing on the World Wide Web. , 1996 .

[3]  P. Sheldon Tourism Information Technology , 1997 .

[4]  Thomas Rist,et al.  Adding animated presentation agents to the interface , 1997, IUI '97.

[5]  Michael K. Reiter,et al.  Crowds: anonymity for Web transactions , 1998, TSEC.

[6]  M. Kasavana,et al.  Netlurking: The Future of Hospitality Internet Marketing , 1998 .

[7]  Paul F. Syverson,et al.  Anonymous connections and onion routing , 1998, IEEE J. Sel. Areas Commun..

[8]  D. Pitta Marketing one-to-one and its dependence on knowledge discovery in databases , 1998 .

[9]  Craig S. Breitenbach,et al.  Value‐added marketing in the digital domain: enhancing the utility of the Internet , 1998 .

[10]  Craig A. Knoblock,et al.  A hierarchical approach to wrapper induction , 1999, AGENTS '99.

[11]  Sourav S. Bhowmick,et al.  Research Issues in Web Data Mining , 1999, DaWaK.

[12]  N. Kushmerik Gleaning the Web , 1999, IEEE Intell. Syst..

[13]  Karin Weber,et al.  Profiling People Searching for and Purchasing Travel Products on the World Wide Web , 1999 .

[14]  Mark S. Ackerman,et al.  Beyond Concern: Understanding Net Users' Attitudes About Online Privacy , 1999, ArXiv.

[15]  Alexander Hellemans Internet Security Code Is Cracked , 1999, Science.

[16]  Oren Etzioni,et al.  Towards adaptive Web sites: Conceptual framework and case study , 1999, Artif. Intell..

[17]  Gerald L. Lohse,et al.  Predictors of online buying behavior , 1999, CACM.

[18]  J. Hendler Gleaning the Web , 1999 .

[19]  Pattie Maes,et al.  Agents that buy and sell , 1999, CACM.

[20]  M. A. Merzbacher Discovering Semantic Proximity for Web Pages , 1999, ISMIS.

[21]  Hongjun Lu,et al.  A Comparative Study of Classification Based Personal E-mail Filtering , 2000, PAKDD.

[22]  Jian Pei,et al.  Mining Access Patterns Efficiently from Web Logs , 2000, PAKDD.

[23]  Ed Greengrass,et al.  Design Considerations for Agent Systems that Glean the Internet , 2000, IEEE Intell. Syst..

[24]  Richard T. Watson,et al.  Integrated Internet marketing , 2000, CACM.

[25]  Michael J. Shaw,et al.  Web-based e-catalog systems in B2B procurement , 2000, Commun. ACM.

[26]  Justine Cassell,et al.  Embodied conversational interface agents , 2000, CACM.

[27]  P. Alford E-business models in the travel industry. , 2000 .

[28]  Hui Xiong,et al.  Adapting the right web pages to the right users , 2000, SPIE Defense + Commercial Sensing.

[29]  Rhonda Delmater,et al.  Data Mining Explained: A Manager's Guide to Customer-Centric Business Intelligence , 2001 .

[30]  J. Palous,et al.  Machine Learning and Data Mining , 2002 .