A switching fractional calculus-based controller for normal non-linear dynamical systems

In this paper, a fractional calculus-based terminal sliding mode controller is introduced for finite-time control of non-autonomous non-linear dynamical systems in the canonical form. A fractional terminal switching manifold which is appropriate for canonical integer-order systems is firstly designed. Then some conditions are provided to avoid the inherent singularities of the conventional terminal sliding manifolds. A non-smooth Lyapunov function is adopted to prove the finite time stability and convergence of the sliding mode dynamics. Afterward, based on the sliding mode control theory, an equivalent control and a discontinuous control law are designed to guarantee the occurrence of the sliding motion in finite time. The proposed control scheme uses only one control input to stabilize the system. The proposed controller is also robust against system uncertainties and external disturbances. Two illustrative examples show the effectiveness and applicability of the proposed fractional finite-time control strategy. It is worth noting that the proposed sliding mode controller can be applied for control and stabilization of a large class of non-autonomous non-linear uncertain canonical systems.

[1]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[2]  M. P. Aghababa No-chatter variable structure control for fractional nonlinear complex systems , 2013 .

[3]  C. Lubich Discretized fractional calculus , 1986 .

[4]  M. P. Aghababa Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique , 2012 .

[5]  Xi Liu,et al.  Finite-Time Attitude Tracking Control for Spacecraft Using Terminal Sliding Mode and Chebyshev Neural Network , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Tzuu-Hseng S. Li,et al.  Fuzzy terminal sliding-mode controller for robotic manipulators , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[7]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[8]  Changpin Li,et al.  On Riemann-Liouville and Caputo Derivatives , 2011 .

[9]  Zhihong Man,et al.  Multi-input uncertain linear systems with terminal sliding-mode control , 1998, Autom..

[10]  Mohammad Pourmahmood Aghababa,et al.  Design of a chatter-free terminal sliding mode controller for nonlinear fractional-order dynamical systems , 2013, Int. J. Control.

[11]  M. P. Aghababa,et al.  A Novel Finite-Time Sliding Mode Controller for Synchronization of Chaotic Systems with Input Nonlinearity , 2013 .

[12]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[13]  I. S. Jesus,et al.  Fractional control of heat diffusion systems , 2008 .

[14]  M. P. Aghababa,et al.  Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique , 2011 .

[15]  Wei Xiang,et al.  Second-order terminal sliding mode controller for a class of chaotic systems with unmatched uncertainties , 2010 .

[16]  Mohammad Pourmahmood Aghababa,et al.  A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances , 2012, Appl. Math. Comput..

[17]  Wei Zhang,et al.  Finite-time chaos control via nonsingular terminal sliding mode control , 2009 .

[18]  Alain Oustaloup,et al.  A fractional order model for lead-acid battery crankability estimation , 2010 .

[19]  Michel Fliess,et al.  Generalized controller canonical form for linear and nonlinear dynamics , 1990 .

[20]  I. Podlubny Fractional differential equations , 1998 .

[21]  Abbas Erfanian,et al.  Adaptive fuzzy terminal sliding mode control for a class of MIMO uncertain nonlinear systems , 2011, Fuzzy Sets Syst..

[22]  M. P. Aghababa Robust Finite-Time Stabilization of Fractional-Order Chaotic Systems based on Fractional Lyapunov Stability Theory , 2012 .

[23]  Xinghuo Yu,et al.  Fast terminal sliding-mode control design for nonlinear dynamical systems , 2002 .

[24]  Mohammad Pourmahmood Aghababa,et al.  Chaos in a fractional-order micro-electro-mechanical resonator and its suppression , 2012 .

[25]  Ming-Ying Hsiao,et al.  A finite time synergetic control scheme for robot manipulators , 2012, Comput. Math. Appl..

[26]  Mohammad Pourmahmood Aghababa,et al.  Chaos suppression of a class of unknown uncertain chaotic systems via single input , 2012 .

[27]  M. Rapaić,et al.  Optimal control of a class of fractional heat diffusion systems , 2010 .

[28]  Mohammad Pourmahmood Aghababa,et al.  The rich dynamics of fractional-order gyros applying a fractional controller , 2013, J. Syst. Control. Eng..

[29]  M. P. Aghababa A novel terminal sliding mode controller for a class of non-autonomous fractional-order systems , 2013 .

[30]  Hong Ren Wu,et al.  A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators , 1994, IEEE Trans. Autom. Control..

[31]  Mohammad Pourmahmood Aghababa,et al.  Nonsingular terminal sliding mode approach applied to synchronize chaotic systems with unknown parameters and nonlinear inputs , 2012 .

[32]  H.-K. Chen CHAOS AND CHAOS SYNCHRONIZATION OF A SYMMETRIC GYRO WITH LINEAR-PLUS-CUBIC DAMPING , 2002 .

[33]  M. P. Aghababa Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller , 2012 .

[34]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[35]  Yu Tang,et al.  Terminal sliding mode control for rigid robots , 1998, Autom..

[36]  Liu Hui,et al.  Terminal Sliding Mode Control for Spacecraft Formation Flying , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[37]  Luis Vázquez Martínez,et al.  Fractional dynamics of populations , 2011, Appl. Math. Comput..

[38]  Syuan-Yi Chen,et al.  Robust Nonsingular Terminal Sliding-Mode Control for Nonlinear Magnetic Bearing System , 2011, IEEE Transactions on Control Systems Technology.

[39]  Xinghuo Yu,et al.  Terminal sliding mode control of MIMO linear systems , 1997 .

[40]  Michail Zak,et al.  Terminal attractors in neural networks , 1989, Neural Networks.

[41]  Mohammad Pourmahmood Aghababa,et al.  Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities , 2012 .

[42]  Y. Chen,et al.  Experimental study of fractional order proportional derivative controller synthesis for fractional order systems , 2011 .

[43]  M. P. Aghababa,et al.  Design of a sliding mode controller for synchronizing chaotic systems with parameter and model uncertainties and external disturbances , 2012 .

[44]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..