A posteriori and constructive a priori error bounds for finite element solutions of the Stokes equations

We describe a method to estimate the guaranteed error bounds of the finite element solutions for the Stokes problem in mathematically rigorous sense. We show that an a posteriori error can be computed by using the numerical estimates of a constant related to the so-called inf-sup condition for the continuous problem. Also a method to derive the constructive a priori error bounds are considered. Some numerical examples which confirm us the expected rate of convergence are presented.

[1]  Mitsuhiro Nakao A numerical approach to the proof of existence of solutions for elliptic problems II , 1988 .

[2]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes problem , 1991 .

[3]  Randolph E. Bank,et al.  A posteriori error estimates for the Stokes equations: a comparison , 1990 .

[4]  Rüdiger Verfürth,et al.  A posteriori error estimators for the Stokes equations II non-conforming discretizations , 1991 .

[5]  Nobito Yamamoto,et al.  Numerical verifications of solutions for elliptic equations in nonconvex polygonal domains , 1993 .

[6]  Alessandro Russo,et al.  A posteriori error estimators for the Stokes problem , 1995 .

[7]  Cornelius O. Horgan,et al.  On inequalities of Korn, Friedrichs and Babuška-Aziz , 1983 .

[8]  R. Verfürth A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .

[9]  M. Nakao Solving Nonlinear Elliptic Problems with Result Verification Using an H -1 Type Residual Iteration , 1993 .

[10]  Seiji Kimura,et al.  On the Best Constant in the Error Bound for theH10-Projection into Piecewise Polynomial Spaces , 1998 .

[11]  M. Nakao,et al.  Numerical verifications for solutions to elliptic equations using residual iterations with a higher order finite element , 1995 .

[12]  R. Verfürth A posteriori error estimators for the Stokes equations , 1989 .

[13]  Mitsuhiro Nakao,et al.  Numerical verifications of solutions for nonlinear elliptic equations , 1993 .

[14]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .