A posteriori and constructive a priori error bounds for finite element solutions of the Stokes equations
暂无分享,去创建一个
[1] Mitsuhiro Nakao. A numerical approach to the proof of existence of solutions for elliptic problems II , 1988 .
[2] Randolph E. Bank,et al. A posteriori error estimates for the Stokes problem , 1991 .
[3] Randolph E. Bank,et al. A posteriori error estimates for the Stokes equations: a comparison , 1990 .
[4] Rüdiger Verfürth,et al. A posteriori error estimators for the Stokes equations II non-conforming discretizations , 1991 .
[5] Nobito Yamamoto,et al. Numerical verifications of solutions for elliptic equations in nonconvex polygonal domains , 1993 .
[6] Alessandro Russo,et al. A posteriori error estimators for the Stokes problem , 1995 .
[7] Cornelius O. Horgan,et al. On inequalities of Korn, Friedrichs and Babuška-Aziz , 1983 .
[8] R. Verfürth. A posteriori error estimates for nonlinear problems: finite element discretizations of elliptic equations , 1994 .
[9] M. Nakao. Solving Nonlinear Elliptic Problems with Result Verification Using an H -1 Type Residual Iteration , 1993 .
[10] Seiji Kimura,et al. On the Best Constant in the Error Bound for theH10-Projection into Piecewise Polynomial Spaces , 1998 .
[11] M. Nakao,et al. Numerical verifications for solutions to elliptic equations using residual iterations with a higher order finite element , 1995 .
[12] R. Verfürth. A posteriori error estimators for the Stokes equations , 1989 .
[13] Mitsuhiro Nakao,et al. Numerical verifications of solutions for nonlinear elliptic equations , 1993 .
[14] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .