Choice under uncertainty with the best and worst in mind: Neo-additive capacities

We develop the simplest generalization of subjective expected utility that can accommodate both optimistic and pessimistic attitudes towards uncertainty-Choquet expected utility with non-extreme-outcome-additive (neo-additive) capacities. A neo-additive capacity can be expressed as the convex combination of a probability and a special capacity, we refer to as a Hurwicz capacity, that only distinguishes between whether an event is impossible, possible or certain. We show that neo-additive capacities can be readily applied in economic problems, and we provide an axiomatization in a framework of purely subjective uncertainty.

[1]  P. Wakker,et al.  Revealed Likelihood and Knightian Uncertainty , 1998 .

[2]  P. Wakker Testing and Characterizing Properties of Nonadditive Measures through Violations of the Sure-Thing Principle , 2001 .

[3]  Henry E. Kyburg,et al.  Studies in Subjective Probability , 1965 .

[4]  D. Schmeidler,et al.  A More Robust Definition of Subjective Probability , 1992 .

[5]  Massimo Marinacci,et al.  APPLIED MATHEMATICS WORKING PAPER SERIES Risk, Ambiguity, and the Separation of Utility and Beliefs † , 2001 .

[6]  J. Kagel,et al.  Winner’s Curse , 2014 .

[7]  David Kelsey,et al.  Differentiating Ambiguity: A Comment , 2006 .

[8]  L. J. Savage,et al.  The Utility Analysis of Choices Involving Risk , 1948, Journal of Political Economy.

[9]  Edi Karni,et al.  Choquet Expected Utility with a Finite State Space: Commutativity and Act-Independence , 1994 .

[10]  Richard Gonzalez,et al.  On the Shape of the Probability Weighting Function , 1999, Cognitive Psychology.

[11]  R. Thaler The Winner s Curse , 1991 .

[12]  Massimo Marinacci,et al.  Ambiguity from the Differential Viewpoint , 2002 .

[13]  Massimo Marinacci,et al.  Ambiguity Made Precise: A Comparative Foundation , 1998, J. Econ. Theory.

[14]  Itzhak Gilboa,et al.  Canonical Representation of Set Functions , 1995, Math. Oper. Res..

[15]  R. Shiller Irrational Exuberance Ed. 2 , 2005 .

[16]  David Kelsey,et al.  E-Capacities and the Ellsberg Paradox , 1999 .

[17]  Larry G. Epstein A definition of uncertainty aversion , 1999 .

[18]  J. Riley,et al.  The analytics of uncertainty and information: Long-run relationships and the credibility of threats and promises , 1992 .

[19]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[20]  M. Sugeno,et al.  Fuzzy Measures and Integrals: Theory and Applications , 2000 .

[21]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[22]  A. Tversky,et al.  Risk Attitudes and Decision Weights , 1995 .

[23]  Faruk Gul,et al.  Savagés theorem with a finite number of states , 1992 .

[24]  Itzhak Gilboa,et al.  A combination of expected utility and maxmin decision criteria , 1988 .

[25]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[26]  R. Mehra,et al.  THE EQUITY PREMIUM A Puzzle , 1985 .

[27]  J. L. Pinto,et al.  A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis , 2000 .

[28]  F. Ramsey The Foundations of Mathematics and Other Logical Essays , 2001 .

[29]  Michèle Cohen,et al.  Security level, potential level, expected utility: A three-criteria decision model under risk , 1992 .

[30]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[31]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.

[32]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[33]  H. Markowitz The Utility of Wealth , 1952, Journal of Political Economy.

[34]  J. Jaffray Choice under risk and the security factor: An axiomatic model , 1988 .

[35]  J. Keynes A Treatise on Probability. , 1923 .

[36]  Massimo Marinacci Decomposition and Representation of Coalitional Games , 1996, Math. Oper. Res..

[37]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[38]  Massimo Marinacci,et al.  A Subjective Spin on Roulette Wheels , 2001 .

[39]  D. Denneberg Non-additive measure and integral , 1994 .

[40]  M. Abdellaoui Parameter-Free Elicitation of Utility and Probability Weighting Functions , 2000 .

[41]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[42]  David Kelsey,et al.  Non-Additive Beliefs and Strategic Equilibria , 2000, Games Econ. Behav..

[43]  Yutaka Nakamura Subjective expected utility with non-additive probabilities on finite state spaces , 1990 .

[44]  David E. Bell,et al.  Disappointment in Decision Making Under Uncertainty , 1985, Oper. Res..

[45]  Massimo Marinacci,et al.  Differentiating ambiguity and ambiguity attitude , 2004, J. Econ. Theory.

[46]  Martin Weber,et al.  What Determines the Shape of the Probability Weighting Function Under Uncertainty? , 1998, Manag. Sci..