Tailoring spatiotemporal light confinement in single plasmonic nanoantennas.

Plasmonic nanoantennas are efficient devices to concentrate light in spatial regions much smaller than the wavelength. Only recently, their ability to manipulate photons also on a femtosecond time scale has been harnessed. Nevertheless, designing the dynamical properties of optical antennas has been difficult since the relevant microscopic processes governing their ultrafast response have remained unclear. Here, we exploit frequency-resolved optical gating to directly investigate plasmon response times of different antenna geometries resonant in the near-infrared. Third-harmonic imaging is used in parallel to spatially monitor the plasmonic mode patterns. We find that the few-femtosecond dynamics of these nanodevices is dominated by radiative damping. A high efficiency for nonlinear frequency conversion is directly linked to long plasmon damping times. This single parameter explains the counterintuitive result that rod-type nanoantennas with minimum volume generate by far the strongest third-harmonic emission as compared to the more bulky geometries of bow-tie-, elliptical-, or disk-shaped specimens.

[1]  Ulrich Hohenester,et al.  MNPBEM - A Matlab toolbox for the simulation of plasmonic nanoparticles , 2011, Comput. Phys. Commun..

[2]  Young-Jin Kim,et al.  Plasmonic generation of ultrashort extreme-ultraviolet light pulses , 2011 .

[3]  Kin Hung Fung,et al.  Nonlinear optical response from arrays of Au bowtie nanoantennas. , 2011, Nano letters.

[4]  J. Aizpurua,et al.  Phase-resolved mapping of the near-field vector and polarization state in nanoscale antenna gaps. , 2010, Nano letters.

[5]  Xiaoji G. Xu,et al.  Few-femtosecond plasmon dephasing of a single metallic nanostructure from optical response function reconstruction by interferometric frequency resolved optical gating. , 2010, Nano letters.

[6]  Alfred Forchel,et al.  Mode imaging and selection in strongly coupled nanoantennas. , 2010, Nano letters.

[7]  A. Borisov,et al.  Amplitude- and Phase-Resolved Near-Field Mapping of Infrared Antenna Modes by Transmission-Mode Scattering-Type Near-Field Microscopy† , 2010 .

[8]  Alfred Leitenstorfer,et al.  Synthesis of a single cycle of light with compact erbium-doped fibre technology , 2010 .

[9]  R. Bratschitsch,et al.  Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. , 2009, Physical review letters.

[10]  M Finazzi,et al.  Cross resonant optical antenna. , 2009, Physical review letters.

[11]  Benjamin J Wiley,et al.  Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires. , 2009, Nano letters.

[12]  S. Mahapatra,et al.  Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot , 2009 .

[13]  Alfred Leitenstorfer,et al.  8-fs pulses from a compact Er:fiber system: quantitative modeling and experimental implementation. , 2009, Optics express.

[14]  Ulrich Hohenester,et al.  High-resolution surface plasmon imaging of gold nanoparticles by energy-filtered transmission electron microscopy , 2009 .

[15]  Lukas Novotny,et al.  Optical Antennas , 2009 .

[16]  S. Bozhevolnyi,et al.  Two-photon mapping of localized field enhancements in thin nanostrip antennas. , 2008, Optics express.

[17]  K. Kern,et al.  Direct near-field optical imaging of higher order plasmonic resonances. , 2008, Nano letters.

[18]  Petru Ghenuche,et al.  Spectroscopic mode mapping of resonant plasmon nanoantennas. , 2008, Physical review letters.

[19]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[20]  Javier Aizpurua,et al.  Mapping the plasmon resonances of metallic nanoantennas. , 2008, Nano letters.

[21]  A. Halm,et al.  Nanomechanical Control of an Optical Antenna , 2008, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[22]  A. Polman,et al.  Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy. , 2007, Nano letters.

[23]  Lukas Novotny,et al.  Effective wavelength scaling for optical antennas. , 2007, Physical review letters.

[24]  Vahid Sandoghdar,et al.  Design of plasmonic nanoantennae for enhancing spontaneous emission. , 2007, Optics letters.

[25]  L. Liz‐Marzán,et al.  Mapping surface plasmons on a single metallic nanoparticle , 2007 .

[26]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[27]  D. Pohl,et al.  Resonant optical antennas and single emitters , 2007 .

[28]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[29]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[30]  Dong Ha Kim,et al.  Scattering-type near-field infrared microscopy of selforganized nanodomains of diblock copolymers , 2005 .

[31]  G S Kino,et al.  Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas. , 2005, Physical review letters.

[32]  Gordon S. Kino,et al.  Optical antennas: Resonators for local field enhancement , 2003 .

[33]  F. G. D. Abajo,et al.  Retarded field calculation of electron energy loss in inhomogeneous dielectrics , 2002 .

[34]  Feldmann,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002, Physical review letters.

[35]  Wenzel,et al.  Decay times of surface plasmon excitation in metal nanoparticles by persistent spectral hole burning , 2000, Physical review letters.

[36]  Bernhard Lamprecht,et al.  RESONANT AND OFF-RESONANT LIGHT-DRIVEN PLASMONS IN METAL NANOPARTICLES STUDIED BY FEMTOSECOND-RESOLUTION THIRD-HARMONIC GENERATION , 1999 .

[37]  Thomas A. Klar,et al.  Surface-Plasmon Resonances in Single Metallic Nanoparticles , 1998 .

[38]  James P. Gordon,et al.  Radiation Damping in Surface-Enhanced Raman Scattering , 1982 .

[39]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[40]  R. H. Ritchie,et al.  Radiative Decay of Coulomb-Stimulated Plasmons in Spheres , 1968 .